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Abstract 
 
In this paper we propose MAPLES (Method for Age Profiles Longitudinal EStimation), a general 
method for the estimation of age profiles which uses standard micro-level retrospective 
demographic survey data. After the specification of data requirements, the method is implemented 
through a data processing routine and the estimation of specific regression models. For the more 
relevant transitions in the field of living arrangements and fertility, MAPLES estimates smoothed 
age profiles and relative risks for time-fixed and time-varying covariates. An example of application 
is carried on data from Italy.  The major advantage of this method is that it can be applied to every 
setting where micro-level data on transitions are available from a large-scale representative survey 
(e.g., Fertility and Family Survey; Generations and Gender) and for different kind of transitions. 
MAPLES is implemented through the R software package and it can be applied to any suitable 
dataset through the execution of R functions.  
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1. Introduction 
 

The estimation of smooth age profiles for demographic events is a problem of general interest, 
which has triggered a substantial amount of research over the last centuries. Starting from mortality, 
e.g. with Gompertz model, scholars have also attacked fertility and marriage. This type of 
estimation has then been embedded within the event history framework, making room for the role 
of time-constant and time-varying covariates. More recently, models that minimize the strength of 
the assumption on the shape of the underlying profiles have been proposed and used. An example is 
the fertility model by Schmertmann (2003) based on splines. The interpolation of age profiles 
through splines had been proposed earlier on by McNeil et al. (1977). 
 
When the interest is not on a single transition, but on a multistate set of transitions, the need for a 
general method for the estimation of age profiles is even more evident. This becomes crucial when 
developing multistate population forecasts, i.e. when forecasts are developed in order to account for 
the complexity of life course trajectories. A typical example is the need to forecast individuals 
according to statuses such as living arrangement and family status. This is the approach, for 
instance, of the “MicMac” population forecasting framework, which aims at explicitly taking into 
account the life course trajectories of individuals in population forecasts (see, e.g., Willekens, 2005; 
van der Gaag et al., 2006). The life course is viewed as a sequence of states and events; each event 
marks a transition from one state to another (see also the statistical approach developed in Andersen 
et al., 1993). The study of a single transition is based on the estimation of its transition rates (from 
the original state to the destination state, in a defined state space). From the literature on living 
arrangements and fertility, we know these behaviours are strongly related to age. Indeed, such 
variation with age has traditionally been exploited in demographic forecasting. 
 
In this paper, our first aim is to describe a general method for the estimation of age profiles for the 
main transitions experienced by individuals, as far as living arrangement and fertility behaviours are 
concerned, which we have been developed within the MicMac project. It is called MAPLES 
(Method for Age Profiles Longitudinal EStimation). The idea of MAPLES to be able to start from 
standard retrospective demographic surveys, such as Fertility and Family Surveys or Generation 
and Gender Surveys, in order to be able to estimate age profiles for various transitions. We present 
the model also by developing a specific application to Italian data.  
 
This paper is structured as follows. In Section 2 we present, through a flow-chart, the basic 
components of MAPLES. In Section 3 we discuss the data preparation step. In Section 4 we present 
the construction of the transition-specific data matrix. In Section 5 the regression and smoothing 
procedure is presented. Section 6 presents an application to Italian data. The Appendix contains 
some of the routines and program examples as boxes. 
 
 
2. The components of MAPLES 
 
Let us start by giving a stepwise description of the components MAPLES, before going into the 
details of each step. 
 
1. Data preparation. In the first step, data are prepared for subsequent computations. Information 
from the original dataset has to be adapted. The starting dataset has to include the dates of the 
events to be studied, separately for men and women. Throughout the following text, the word date 
refers to the time point of a certain event measured in months and years. After the specification of 
the state space and of the possible transitions, an input data file is prepared for subsequent analyses. 
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When the initial dataset is ready, some data consistency checks are executed, such as the insertion 
of missing months, the specification of status variables and the computation of decimal dates and 
ages at various events. This step is common to every transition. 
 
2. Preparation of the transition-specific data matrix. In the second step, MAPLES computes 
episode-data for each specific transition, taking into account both time-fixed and time-varying 
covariates. It transforms the “micro-data” structure (one row = one individual) into what we can 
define a multistate “macro-data” structure (one row = one combination of age and levels of 
covariates). The resulting data matrix contains events and time of exposure for a specific period of 
time up to the interview (window of observation). This is the transition-specific data matrix, as its 
computation depends on the definition of episodes that are specific to each transition. 
 
3. Model estimation. In the third step, we estimate age profiles by modelling the observed set of 
events and exposure times, which are stored in the transition-specific data matrix, using a smoother 
function. In particular, MAPLES uses GAMs (Generalized Additive Models) (Hastie & Tibshirani, 
1990) in a way that permits to jointly estimate the baseline age profile and the effect of covariates as 
multiplicative changes from the baseline. For each row of the transition-specific data matrix, we 
model the logarithm of the transition rate (events divided by time of exposure) by adding a (smooth) 
function of age and a set of fixed covariates. In order to remove the proportionality assumption 
which would be implied by the summation of log-rates, MAPLES considers the multiplicative 
change given by a covariate in a piecewise way, i.e. separately for each sub-interval of age. A final 
smoothing procedure ensures that the estimated final profiles are continuous over age. 
 
MAPLES has been developed with the aim to construct a flexible method that may be applied in 
different contexts, when survey micro-data are available. As a result, this method can be applied to 
every setting where relatively standard family and fertility micro-level data are available from a 
large-scale representative survey. Moreover, it takes into account the most important interactions 
between different trajectories through the specification of different covariates, both time-constant 
and time-varying over the life course. Being based on regression models, the method also permits to 
evaluate confidence intervals and to test hypotheses. The whole method is implemented in R 
software and it could be easily recalled as an R function in order to be applied to real data. 
 
 
Fig. 1 Flow-chart of MAPLES 
 

 
 
 

 

First step  
Data preparation 

Third step  
GAM models, relative risks and smoothing 

 

Second step  
Transition-specific data matrix 
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3. Data preparation 
 
In the first step, the main focus is the preparation of the initial dataset and the computation of basic 
quantities at the individual level such as dates in a decimal format, ages at various events and status 
variables. In order to specify the characteristics of the input data file, we need to define 
unambiguously the state space and the set of transitions that we want to analyze. Moreover, we have 
to cope with inconsistent and missing data. 
 
 
3.1 State space and transitions  
 
We explain the functioning of MAPLES by focusing on the specific example we developed. As in 
de Beer et al. (2006), we consider transitions in three life course domains: 1) marital status; 2) 
fertility and 3) living arrangement. The choice of these transitions is strongly influenced by micro 
data availability. More specifically, we define the state space on the basis of the standard 
information that is generally available in Gender and Generation Surveys (Vikat et al., 2007). 
Moreover, states are chosen in such a way that transition from state A to state B is caused by a non-
repeatable event. We call the generic transition as TRX where X is an identification code. 
 
Let us define the state space for each of the domains. As far as marital status is concerned, we 
distinguish between first marriage and second (or following) marriage. We do not consider further 
transitions after the entry in the second marriage. In table 1 we can see the (qualitative) shape of the 
transition matrix. 
 
 
Table 1. Marital status. State space and transitions 

From \ to Never 
married 

First 
marriage 

Second 
marriage Divorced Widowed 

Never married - TR1    
First marriage  -  TR2 TR3 
Second marriage   -   
Divorced   TR4 -  
Widowed   TR5  - 
 
 
There are many possible transitions in the field of living arrangements, but it is rare to have detailed 
information. This forces us to limit the number of possible states. Given the usual information 
contained in the GGS, we focus our attention to the following states: at parental home, alone/with 
others (never in union), first union, separated (after 1st union disruption), second union. We do not 
consider further transitions after the entry in the second union (table 2) 
 
As far as fertility is concerned, the possible states are the following: childless, 1 child, 2 children, 3 
children, 4 or more children. Transition such as 0  2, 1 3, etc. caused by multiple births are not 
taken into account. A childless woman who has a twin birth simply experiences the transition 0 1 
and 1 2 at the same date. The transition matrix is given in table 3. 
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Table 2. Living arrangement. State space and transitions 

From \ to at parental 
home 

Alone/with 
others (never 

in union) 
First union 

Separated 
(after 1st 

union 
disruption) 

Second 
union 

at parental home (never 
in union) - TR7 TR6   

Alone/with others  - TR8   
First union   - TR9  
Separated (after 1st 
union disruption)    - TR10 

Second union     - 
 
 
 
Table 3. Fertility (own children ever born). State space and transitions 
From \ to childless 1 child 2 children 3 children 4+ children 
Childless - TR11    
1 child  - TR12   
2 children   - TR13  
3 children    - TR14 
4+ children     - 
 
 
 
3.2 The input data file 
 
Transitions as presented earlier are available from retrospective questionnaires. In order to feed the 
subsequent steps, an input data file has to be specified. In this case we discuss a more practical 
instance. Table 4 reports the record structure that is needed in input datafile (as required by the 
implementation of MAPLES using the R software). Variables highlighted in gray (id, weight, date 
of birth, date of interview, sex, and education) are compulsory: missing values are not allowed. 
Further information is optional and we may simply do not include it, or part of it, in the dataset. 
Weights must be normalized (average weight must be 1). If data have no weights it is sufficient to 
specify a unit weight for all individuals in the sample. We assume that individuals in the dataset are 
aged 18 and more at the interview. All dates are expressed in calendar month (format MM: 1 to 12) 
and year (format YYYY).  
We now consider the presence of typical time-constant covariates: sex and education (the latter 
taken here as time-constant only for simplicity). Sex is coded as follows: 
 

1. Men 
2. Women 

 
Edu is the level of education reported by respondents (with at least 18 years old) at the interview. 
We consider this variable as time-fixed in the sense that values remain constant throughout the 
biography. The variable is coded as follows: 
 

1. Primary (ISCED0 pre-primary education and ISCED1 first stage of basic education) 
2. Lower secondary (ISCED2 second stage of basic education) 
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3. Upper secondary (ISCED3 upper secondary education and ISCED4 post secondary non-
tertiary education) 

4. Tertiary (ISCED5 first stage of tertiary education and ISCED6 second stage of tertiary 
education) 

 
A transition is well-defined when we know which event causes it, at which point in time it occurs 
and when the individual starts to be at risk of living this event. Moreover, at a certain point in time 
the individual may experience an event that does not permit to follow his/her life course further on, 
i.e. the observation is censored (Blossfeld and Rowher, 2002). With longitudinal retrospective data 
this usually happens at the interview or, for example, at the death of spouse when we are studying 
the transition to divorce for married people. 
 
 
Table 4. Initial dataset record structure. 

variable name Description Format 

id Identification number (individual level) 8 
weight Normalized Weight 10 
ybirth Year of birth 4 
mbirth Month of birth 2 
yint Year of interview 4 
mint Month of interview 2 
yexit Year of exit from parental home 4 
mexit Month of exit from parental home 2 
ymarr Year of first marriage 4 
mmarr Month of first marriage 2 
ydiv Year of divorce (first marriage) 4 
mdiv Month of divorce (first marriage) 2 
yved Year of death of spouse (first marriage) 4 
mved Month of death of spouse (first marriage) 2 
ypartn Year of first union (cohabitation or marriage) 4 
mpartn Month of first union (cohabitation or marriage) 2 
ydiss Year of first union (cohabitation or marriage) disruption   4 
mdiss Month of first union (cohabitation or marriage) disruption   2 
ypartn2 Year of second union  4 
mpartn2 Month of second union  2 
ymarr2 Year of second marriage 4 
mmarr2 Month of second marriage 2 
ych1 Year of first child’s birth 4 
mch1 Month of first child’s birth 2 
ych2 Year of second child’s birth 4 
mch2 Month of second child’s birth 2 
ych3 Year of third child’s birth 4 
mch3 Month of third child’s birth 2 
ych4 Year of fourth child’s birth 4 
mch4 Month of fourth child’s birth 2 
sex Sex 1 
edu Level of education (ISCED) 1 
 
 
In table 5, we show for each possible transition the events that define episodes, i.e. the events that 
cause the entry into the period at risk, the transition itself and the events that imply the exit from 
observation (censoring). Given these information we can specify the dates required for the analysis 
of each transition. In any case the date of interview and the birth date of respondents are necessary.  
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Table 5. Episodes and dates required for each transition.  

 
(1) Date of births, date at the interview and sex are always needed. 

 
TRANSITION 
 

Episode starts at Events that cause 
transitions 

Events that cause 
censoring 

 
Dates required(1) 

 

 
TR1 
never-married  
married (1st marriage) 

respondent’s birth 1st  marriage interview (ymarr,mmarr) 
 

TR2 
married (1st marriage)  
divorced 

1st marriage divorce death of spouse, 
interview 

(ymarr,mmarr) 
(ydiv,mdiv) 
(yved, mved) 

TR3 
married (1st marriage)  
widowed 

1st marriage death of spouse divorce, interview 
(ymarr,mmarr) 
(ydiv,mdiv) 
(yved, mved) 

TR4 
divorced  
married (2nd marriage) 

divorce 2nd marriage death of spouse, 
interview 

(ymarr,mmarr) 
(ydiv,mdiv) 
(yved,mved) 
(ymarr2,mmarr2) 

TR5 
widowed  
married (2nd marriage) 

death of spouse 2nd marriage interview 

(ymarr,mmarr) 
(ydiv,mdiv) 
(yved,mved) 
(ymarr2,mmarr2) 

TR6 
at parental home (never 
in union)  first union 
 

date of birth exit from parental 
home for union 

exit from parental 
home for other 
reasons ,interview 

(ypartn,mpartn 
()yexit,mexit) 
 

TR7 
at parental home  
alone/with others (never 
in union) 

date of birth 
exit from parental 
home for other 
reasons 

exit from parental 
home for union, 
interview 

(ypartn,mpartn) 
(yexit,mexit) 
 

TR8 
alone/ with others (never 
in union)  first union 

exit from parental 
home 1st union interview 

(ypartn,mpartn) 
(yexit,mexit) 
 

TR9 
first union  separated      
(after 1st union 
disruption) 

1st union 1st union dissolution interview 
(ypartn,mpartn) 
(ydiss,mdiss) 
 

TR10 
alone or with other 
persons (after the 1st 
union disruption)  with 
a partner (2nd union) 

1st union dissolution 2nd union interview (ydiss,mdiss) 
(ypartn2,mpartn2) 

TR11 
childless  
1 child 

respondent’s birth 1st child’s birth interview (ych1,mch1) 
 

TR12 
1 child  
2 children 

1st child’s birth+ 9 
months 2st child’s birth interview (ych2,mch2) 

(ych1,mch1) 

TR13 
2 children  
3 children 

2nd child’s birth+ 9 
months 3rd child’s birth interview 

(ych3,mch3) 
(ych2,mch2) 
(ych1,mch1) 

TR14 
3 children  
4 children 

3rd child’s birth 4th child birth interview 

(ych4,mch4) 
(ych3,mch3) 
(ych1,mch1) 
(ych2,mch2) 
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3.3 Status variables 
 
The status variable indicates if an event has been experienced or not before the interview. It is 
computed internally, according to the availability of the event’s year. The rule is the following: 
when the year of a date is missing, the event is considered as not having been experienced (yet). For 
example, let us consider transition TR11 (from “first child” to “second  child”). If the year of birth 
of the second child is missing, we assume that the respondent has only one child at the interview 
and the corresponding status variable is 0. If the year of second child’s birth is not missing, the 
status variable is 1 (event occurred). Anyhow, if the year of first child’s birth is missing, we assume 
that the respondent is still childless at the interview: the case is “not applicable” in the analysis of 
second birth because the individual has never been at risk to live the event and the status variable is 
fixed at 9.  
As a general rule, for a generic transition TRX the status variable have the following values: 
 

- 0 if the individual has never experienced TRX at the time of the interview (the case is 
censored at the interview); 

- 1 if the individual experienced TRX before the interview; 
- 9 if the case is not applicable, i.e. the individual has never been at risk to experience TRX.  

 
The only status variable that does not follow this rule is the one that is associated to the event 
leaving parental home. There are two possible destinations: union (marriage or cohabitation) or 
other reasons (single living or with other persons). Moreover, there are no “not applicable” cases 
since everybody is considered as beginning their life in their parents’ household. We do not know 
the reason for leaving home but considering the date at exit from parental home (yexit, mexit) and 
the date at first union (ypartn,mpartn), we can compute the status variable with the following 
categories: 
 

- 0 no exit (no yexit); 
- 1 union (yexit≥ypartn);  
- 2 other reason (yexit≤ypartn or no ypartn). 
 

The internal computation of status variables strictly requires that unknown dates are not written as 
missing in the initial dataset. A missing year simply means that the associated event did not occur. 
This is in line with indications given by other authors. For example, Matsuo & Willekens (2003) 
specify that a missing year means that the event did not occur even when the respondent indicated, 
in another item, that the event did occur. Therefore, the user must pay attention to missing values in 
the dataset, check possible missing dates and exclude ambiguous cases from the dataset. 
 
 
3.4 Missing months 
 
It is desirable that the user specifies months using all available information. However, if a missing 
year is critical and should probably lead to the exclusion of a case, a missing month (when year is 
known) can be overcome without jeopardizing analyses using simple hypotheses.  
Two circumstances are conceivable: 

- months are totally missing: for a specific event, the month of occurrence is not available 
because this information is not gathered in the questionnaire.  

- months are partially missing: month was asked in the interview but respondent did not 
answer. 
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In both cases, MAPLES estimates missing months through the application of Uniform distribution, 
i.e. it inputs a random number between 1 and 12. For example, if we do not have the month at the 
first marriage (mmarr) but we have the year (ymarr), date of marriage (and age of marriage) can be 
computed by setting month of first marriage as a random number form 1 to 12. In some cases, we 
have additional information that can be used as constraints in the estimation of missing months. All 
the criteria used with this aim can be read in table 6. Missing months are not allowed for date of 
birth and interview. 
 
 
Table 6. Constraints used for the imputation of missing months 

Missing month Not missing 
month Condition Input missing month as month 

at 
exit 1st union year of exit = year of  1st  union 1st union 
1st union 1st marriage year of 1st union= year of 1st  marriage 1st marriage 
1st union exit year of 1st union= year of exit exit 
1st union disruption 1st union year of union disruption = year of 1st union random: 1st union to 12 
1st union disruption 2nd union year of union disruption = year of 2nd union random: 1 to 2nd union 
2nd union 1st union disrupt. year of 2nd union=year of union disruption random: 1st union disrupt. to 12
1st  marriage 1st union year of  1st  marriage= year of  1st union 1st union 
1st  marriage exit year of  1st  marriage= year of exit exit 
divorce 2nd marriage year of divorce = year of 2nd marriage random: 1 to 2nd marriage 
death of spouse 2nd marriage year of death of spouse = year of 2nd marriage random: 1 to 2nd marriage 
death of spouse 1st marriage year of death of spouse=year of 1st marriage random:1st marr. to 12 
2nd marriage divorce year of divorce = year of 2nd marriage random: divorce to 12 
2nd marriage death of spouse year of death of spouse = year of 2nd marriage random: death of sp. to 12 
2nd child 1st child year of 2nd birth = year of 1st birth 1st birth 

2nd child 1st child year of 2nd birth = year of 1st birth +1 
and month of 1st birth>4 random: (1st birth -3) to 12 

3nd child 2st child year of 3rd birth = year of 2nd birth 2nd birth 

3nd child 2st child year of 3rd birth = year of 2nd birth +1 
and month of 2nd birth > 4 Random: (2nd birth -3) to 12 

4nd child 3st child year of 4th birth = year of 3rd birth 3rd birth 

4nd child 3st child year of 4th birth = year of 3rd birth +1 
and month of 3rd birth > 4 Random: (3rd birth -3) to 12 

 
 
 
3.5 Consistency checks 
 
The focus on dates can reveal several inconsistencies that may remain hidden otherwise. In 
particular, some sequences of dates cannot be real (e.g. second marriage experienced before the end 
of first marriage, second child born before first child) or dates of some events are clearly not 
reported even if they clearly occurred (e.g. second marriage is reported while information about the 
end of first marriage are missing).  
Inconsistent sequencing and/or timing of events may be due to typing errors made by interviewer or 
during the data capture. The user should use all available information in order to correct these 
inconsistencies, but some of them may remain in the dataset. Table 7 shows the list of consistency 
checks that MAPLES executes on the initial dataset. When an inconsistent date is detected for a 
specific case, MAPLES assigns value 9 to the correspondent status variable. This means that the 
case is dropped from the dataset every time that we want to study a transition that requires the date 
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reported as inconsistent. This means that the case is dropped from the calculations when we study a 
transition that requires the date reported as inconsistent. If an inconsistency emerges for another 
event that is not currently required, the case is included in the analysis. For example, if the j-th 
individual shows inconsistency in the date of exit from parental home, when we analyze first child’s 
birth (TR11), he/she is included in the analysis. Otherwise, if we focus on transition to first union 
(TR6), the individual is dropped. 
 
 
Table 7 Criteria used in order to identify inconsistent cases.  
Year at:   Year at: 
exit from parental home  <  birth                      
first union  <  birth +14 
first union disruption < first union 
marriage  < birth  +14 
divorce (1st marr.) <  marriage 
death of spouse (1st marr.) <  marriage 
second union  < first union  
second union  < first union disruption 
second marriage  <  death of spouse (1st marr.)  
second marriage  <  divorce  (1st marr.) 
first child  <  birth + 14 
second child  <  first child 
third child  < second child 
fourth child  <  third child 
Years of events must have lower or equal to the year of interview.
 
 
3.6 Computation of decimal dates and ages 
 
A generic date (year, month) is transformed in a continuous expression through the formula 
 

0.5_ 1900
2

monthdate event year −
= − +  

 
A date is pointed to the middle of the specified month mdate. The correspondent age is computed 
as: 
 

_ _ _age event date event date birth= −  
 
where date_birth is the decimal date of birth. 
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4. Transition-specific data matrix 
 
After the first step, all relevant data at the individual level are available. Using these data, our aim is 
to create a matrix containing, for any combination of covariates, the number of events experienced 
by individuals and their exposure time at each age included in the windows of observation. In order 
to do so, we have to specify the type of rates, episode and window of observation considered, the 
time varying covariates retained, and some additional computation criteria. From this point onward, 
the procedure is transition-specific, i.e. it has to be repeated for each transition. 
 
 
4.1 Cohort-period rates and cohort-age rates 
 
The first point that we have to fix is the kind of rates we want to estimate. In demographic analysis 
there are basically three kinds of rates, depending on how events are classified: 1) period-age, 2) 
cohort-age, and 3) cohort-period rates. Given that we refer to retrospective data, which are strictly 
related to a specific cohort, we have no interest in period-age rates. Cohort-age rates (figure 1a) are 
the best choice in order to define age profiles: they relate to events that occurred to a specific cohort 
at age x (between the x-th and the x+1-th birthday). Cohort-period rates (figure 1b) take into account 
events occurred to a specific cohort during the t-th calendar year, then, referring to two different 
years of age x-1 and x. It is well known in the literature that the latter are the best choice when rates 
are used in demographic projections. MAPLES can estimate age profiles using both kinds of rates. 
In the first case (cohort-age rates), the time scale is based on the individual age (episodes are 
defined by ages at different events) whereas, in the second case (cohort-period rates), the time scale 
is based on calendar time (episodes are defined by dates of different events). Given that an age 
profile is described as a vector of rates at different ages, the generic cohort-period rate at time t 
(covering age x-1 and x) is referred to as the rate at age x. 
 
 
Fig. 1 Area of interest in the Lexis diagram according to the kind of transition rate 
 
a. Cohort-age rate     b. Cohort-period rate  
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4.2 Window of observation and episodes 
 
Here, information in the living arrangement and fertility fields is collected through surveys based on 
respondents aged at least 18 years at the interview. This is consistent with the dynamics of such 
behaviors in contemporary Europe. Given that the focus of MAPLES is the estimation of age 
profiles, especially as used for forecasting purposes, we refer explicitly to the most recent 
behaviors. A plausible period could be the last five years before the interview but in general we may 
refer to a generic length of wl years. For the j-th individual the window of observation is the time 
interval ( )_ ,WIN start INTERVIEW

j jt t  defined as follows: 
 

- for cohort-period rates (the time axis is calendar time): 
_WIN start

jt  = trunc(date_int) − wl 
INTERVIEW
jt = date_int     

- for cohort-age rates (the time axis is age): 
_WIN start

jt  = ceiling(trunc(date_int) − wl − date_birth) 
INTERVIEW
jt = age_int 

 
where date_int and age_int, respectively the decimal date and the age at the interview, date_birth is 
the decimal date at birth; the operator trunc(x) gives the integer part x and ceiling(x) returns the 
smallest integer not less than x; finally, wl is the window length. 
 
As a general rule, we consider only the events experienced in this window. Taking wl=5, the 
window of observation in the Lexis diagram is the light gray area in figure 3a (cohort-age rates) and 
in 3b (cohort-period rates). Transition rate at age x is computed taking into consideration the black 
gray area. 
 
 
Fig. 3. Window of observation in the Lexis diagram (window length=5 years) according to the kind 
of transition rates. Individuals are interviewed in a precise point in time during year t. 
 
a. Cohort-age rate              b. Cohort-period rate  

 
 
 
 



  

 13

 
In section 3.1 and 3.2 we saw that a generic transition TRX represents the passage from state A to 
state B caused by the experience of event E. We need to define the related episode for each 
individual j. Generally speaking, an episode starts in S

jt  (the point in time when the individual 

enters in state A, i.e. starts to be at risk of experiencing E) and ends in F
jt  (the point in time when E 

occurs or when the observation is censored). The list of events that cause transitions or censoring 
for each specific TRX is shown in table 4. 
For a window of observation defined as the interval from _WIN start

jt  to INTERVIEW
jt , we have that: 

 
if F

jt <= _WIN start
jt    episode is not considered 

if S
jt > _WIN start

jt     then S
jt = _WIN start

jt      
 
In other words, episodes are reduced to their intersection with the window of observation. 
 
 
4.3 Time-varying variables 
 
Life courses are usually segmented into domains of life that exist in parallel and generally interact 
(e.g., Blossfeld and Rohwer, 2002). One of the most interesting aspects of MAPLES is the 
opportunity to consider time-varying covariates, i.e. variables that identify changing status 
throughout life course. Each domain may be divided further into discrete states of existence. The set 
of possible states a person can occupy is known as the state space. The states are mutually exclusive 
(only one state can be occupied at a time) and exhaustive (at in any point of time each individuals 
must be in one of the states.  
 
Given the dates included in the initial dataset it is possible to consider the following time varying 
covariates 
 
Marital status (MAR): 
  
 a. Never married 

b. First marriage 
c. Second marriage. 
d. Divorced or widowed 

 
 Own children ever born (CHI):  
 

a. childless 
b. one child 
c. two children 
d. three or more children. 

 
Living arrangements (LIV): 
 

 a. Living in the parental home 
b. Living alone or with other persons 
c. With a partner 
 

We assume that the parental home may be left only once (see, e.g., Matsuo and Willekens, 2003). 
We also suppose that a married individual lives with his/her partner. 
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Table 8. Combination of categories for each variable. 

Available dates Not available dates Categories Code 
 

Number 
of 

categories
MAR (Marital Status) 

None 
Fist marriage; divorce; 
death of spouse; second 
marriage 

None 0 1 

First marriage Divorce; death of 
spouse; second marriage

1. Never married (a)  
2.Ever married (b,c,d)  1 2 

Fist marriage; divorce; 
death of spouse, second 
marriage 

None 

1.Never married (a)  
2.First marriage (b) 

3. Second marriage (c) 
4. Divorced or widowed (d) 

2 4 

CHI (Own children ever born) 

None First child; second child; 
third child None 0 1 

First child Second; third child 1. Childless(a) 
2. With children (b,c,d) 1 2 

First child; second child Third child 
1. Childless (a) 

2. One (b) 
3. Two or more (c,d) 

2 3 

First child; second child; 
third child None 

1. Childless (a) 
2. One (b) 
3.Two (c)  

4. Three or more (d) 

3 4 

LIV (Living arrangements) 

None Exit, first union; union 
disruption; second union None 0 1 

Exit First union; union 
disruption; second union

1. Parental home (a) 
2. Exit (b,c) 1 2 

Exit, first union Union disruption; 
second union 

1.Parental home (a) 
2. Alone or with others (b) 

3. First union (c) 
2 3 

Exit, first union; union 
disruption; second union None 

1. Parental home (a) 
 2. Alone or with others (b) 

3. With a partner (c) 
3 3 

EDU (Education) 
None Education None 0 1 

Education - 1.Primary-Lower sec.(a,b) 
2. Upper sec.-tertiary (c,d) 1 2 

Education - 
1. Primary- Lower sec.(a,b) 

2. Upper sec. (c) 
3. Tertiary (d) 

2 3 

Education - 
1. Primary (a) 

2. Lower sec.(b) 
3. Upper sec.-tertiary (c,d) 

3 3 

Education - 

1. Primary (a) 
2. Lower sec.(b) 
3. Upper sec.(c) 
4. Tertiary (d) 

4 4 
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Each time-varying variable can be specified when a set of specific dates is available. Generally 
speaking, the level of detail of covariates depends on the dates included in the initial dataset. If all 
dates are collected, covariates have the maximum number of categories; otherwise, limited 
information implies one or more aggregations. For example, considering the variable CHI, if we 
have only the date of the first child’s birth but not the date of following births, we can distinguish 
between the childless period and the period with one or more children in the biography of an 
individual but we cannot differentiate between category b, c, and d. In table 8, we show a set of 
rules for each time-varying variable: depending on available dates, we can have a certain number of 
categories each one coded as an integer from 0 to 3. 
Besides, it is also useful to specify combinations of categories for the time-fixed variable EDU. We 
will understand why in section 5.6 where we will refer again to the scheme in table 8.  
Some covariates make no sense for specific transitions. For example, in TR1, MAR is constantly 
“never married” by definition. Table 9 shows for each transition which time-varying covariates are 
allowed.   
 
 
Table 9. Allowed covariates for each transition 

TRANSITION Allowed covariates 

TR1 never-married  married (1st marriage) EDU, LIV, CHI 

TR2 married (1st marriage)  divorced EDU,CHI 

TR3 married (1st marriage)  widowed EDU,CHI 

TR4 divorced  married (2nd marriage) EDU, CHI 

TR5 widowed  married (2nd marriage) EDU,  CHI 

TR6 at parental home (never in union)  first union EDU, CHI* 

TR7 at parental home  alone/with others (never in union) EDU, CHI* 

TR8 alone/ with others (never in union)  first union EDU, CHI* 

TR9 first union  separated  (after 1st union disruption) EDU, MAR, CHI, 
TR10 alone or with other persons (after the 1st union disruption)  
with a partner (2nd union) EDU, MAR,CHI 

TR11 childless   child EDU, MAR, LIV 

TR12 1 child 2 children EDU, MAR, LIV 

TR13 2 children  3 children EDU, MAR, LIV 

TR14 3 children  4 children EDU, MAR, LIV 
* “Own children ever born” is always coded in only two categories: “childless/with children”. 
 
 
The effect of a time-varying variable is modelled by “splitting” the individual episode at the point 
the change occurs (see Blossfeld and Rohwer, 2002). Each sub-episode which results from splitting 
is then characterized by a unique value of this variable. For example, let us consider the transition 
TR2 and an episode that ends with the divorce event. This episode may be described with the vector 
( S

jt , F
jt , 0, 1) where the first value is the starting time, the second is the final time and the last two 

values indicate that the j-th individual starts the episode with a status 0 (married,  not divorced) and 
ends it with the status 1 (divorced). Now, we can imagine that at times 1CH

jt  and 2CH
jt (where 

S
jt < 1CH

jt < 2CH
jt < F

jt ) the j-th individual experienced respectively first and second child’s birth. The 

original episode is thus split into the three sub-episodes: ( S
jt , 1CH

jt , 0, 0), ( 1CH
jt , 2CH

jt , 0, 0) , and 
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( 2CH
jt , F

jt , 0, 1). The covariate CHI is fixed at 0 (childless) in the first sub-episode, at 1 in the second 
(1 child) and at 2 (2 children) in the third.  
In general, an episode is split according to all possible covariates allowed for the specified 
transition. 
 
 
4.4 Events and exposure time 
 
For age x varying from 0 to 100, let Ex be the total number of events experienced by all the 
individuals at age x, and PYx be their total duration of exposure at the same age. The transition rate 
at age x (rx) is then the ratio between the number of events Ex and the amount of time spent in the 
initial state PYx. In order to calculate it, we first compute Ex and PYx for every age x. 
Considering S

jx  and F
jx  the age at the beginning and at the end of the episode, we have seen in 

section 4.2 that the episode is included in the window of observation: 
  
 
 
Let us call N the number of episodes. For the j-th individual we have:  
 

∑

∑

=

=

=

=

N

j
xjx
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j
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0 otherwise
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                                         are experienced at the age x
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⎪
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where xj ,δ  is the fraction of year spent in the initial state by the j-th individual at the exact age at 
which he experienced the event or the exit from observation.1 For example, let us suppose that we 
are interested in the transition TR2 (married  divorced) and that the j-th individual’s episode 
starts at age 41 and ends at age 42.31 with a divorce. At age 41, his contribution is 0 for event and 1 
for exposure time. At age 42 he contributes with 1 event and with 0.31 years for exposure time. 

                                                 
1 Fomulas and examples are valid not only for cohort-age rates but also for cohort-period rates under the assumption 
that the rate at time t (covering age x-1 and x) is referred to as rate at age x (see fig. 1). 

_WIN start S F INTERVIEW
j j j jx x x x≤ ≤ ≤
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We can also include individual post-stratification weights wj in the computation. The formulas 
become: 
 

∑

∑

=

=

⋅=

⋅=

N

j
jxjx

N

j
jxjx

wPYPY

wEE

1
,

1
,

 

 
In order to take into account categorical covariates, it is sufficient to count events and exposure time 
separately for any allowed combination of their levels of categories. In other words, we select sub-
intervals (defined for each combination of covariates levels) to which the previous calculations 
apply. The resulting data matrix will have one row for each combination of age and levels of 
covariates. For example, if we consider an age range from 15 to 49 (35 age classes) and four 
covariates (EDU: 4 levels; MAR: 4 levels; CHI: 4 levels; LIV: 3 levels), the matrix will have a 
number of rows equal to  
 

35 4 4 4 3 6720⋅ ⋅ ⋅ ⋅ =   
 

Rows with a zero exposure time are dropped from the matrix. 
 
 
5. GAMs and transition rates 
 
In the final step, we start from the transition-specific data matrix. Now, each row constitutes a 
specific combination of events, exposure time and covariates (EDU, MAR, CHI, LIV). Transition 
rates are estimated by using Generalized Additive Models, which lead to both obtain a smoothed 
age profile and asses the (multiplicative) effect of one or more covariates. Moreover, MAPLES 
overcomes the proportional assumption by estimating covariate effects separately for different sub-
interval of ages. Finally, smoothing and tail-flattening procedures ensure the continuity of the final 
age profile.  
 
 
5.1 Generalized Additive Models 
 
If we consider the transition rate for a specific event as the dependent variable, we should model it 
as a function of age and a set of covariates. However, age profiles for a specific transition should 
never be considered as a linear function. Smoothing or graduating rates, or more specifically the age 
profile of rates, has been a traditional issue in various disciplines, including demography and 
actuarial science. Traditional approaches based on polynomials have been criticized in the literature 
for a long time, authors proposing to use spline functions as a solution (see, e.g., McNeil et al., 
1977); recent developments include Smith et al. (2004) and, on age-specific fertility rates, 
Schmertmann (2003).  
For our purpose the so-called family of Generalized Additive Models is a suitable solution (Hastie 
& Tibshirani, 1990; Chambers & Hastie, 1992; Hastie et al, 2001). GAMs constitute a 
generalization of linear model where the dependent variable Y can be modeled as a sum of non-
linear (smoother) functions.  
The model structure is as follows: 
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∑++=
k

kk Xagefg ββμ )()( 0            (1) 

 
where )(YE=μ ;  (.)g  is the link function; Y  is the response variable (distributed as some 
exponential distributions); Xk is a generic covariate and βk the corresponding parameter; β0 is the 
intercept; f(age) is the smoothing function of age. 
Since transition rates at age x for a specific event are given by the ratio between number of events 
(Events) and the time of exposure (Exp.time), considering natural logarithm as link function, for 
each i-th row of data matrix2 we can write: 
 

i
k

kiki
i

i Xagef
timeExp

Events
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⎠

⎞
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⎝

⎛
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where iε is a random error term. Then, 
 

i
k

kikiii XageftimeExpEvents εββ ++++= ∑)().ln()ln( 0  

 
or, considering the expected value 
 

∑+++=
k

kik XageftimeExpoffsetEventsE ββ )()].[ln(])[ln( 0     (2) 

 
where  

 
Events ~ Poisson  

 
It is important to underline that the term ln(Exp.time) has no coefficient to be estimated.  
In our dataset, Events are calculated starting from individual weighted information. As a 
consequence, number of events and time of exposure are not integers. Since the Poisson distribution 
is defined only for integers, we need to round the number of weighted events. Empirical analyses 
(not shown here) suggest that this approximation appears acceptable. 
The smoothing function f is a piecewise cubic spline, a curve made up of sections of cubic 
polynomial joined together so that they are continuous in value, as well as first and second 
derivatives. The points at which the sections join are known as the knots of the spline, that are 
placed at quantiles of the distribution of unique x values. The number of knots defines the degree of 
smoothness of the f (i.e. number of knots + 2). In order to avoid the choice of parameter, that is 
essentially arbitrary, the degree of smoothness is estimated by Generalized Cross Validation3 
(Wood, 2006). 
Calling ŷ the fitted values of this model, the transition rate is estimated as: 
 

timeExp
yr
.
ˆˆ =            (4) 

                                                 
2 We remember that each row of the data matrix is given by a specific combination of  age x and the levels of 
categorical covariates.  
3 The way to control smoothness by altering the basis dimension, is to keep it fixed at a size a little larger than  the one 
that could reasonably be necessary, but to control the model’s smoothness by adding a “wiggliness” penalty to the least 
squares fitting objective (penalized regression spline) (Wood, 2006). The mgcv R package contains a GAM 
implementation in which the degree of smoothness of model terms is estimated as part of fitting. 
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5.2 Multiplicative effects of covariates  
 
The effect of covariates is considered as a multiplicative change to be applied to the grand mean, 
i.e. to the mean risk for the whole sample. This is pursued by applying the “deviation coding” 
system that compares the mean of the dependent variable for a given level to the overall mean of the 
dependent variable. If we consider, for example, the categorical covariate Education with 4 levels, 
the deviation coding is accomplished by assigning value “1” to level 1 for the first comparison 
(because level 1 is the level to be compared to all others), to level 2 for the second comparison 
(because level 2 is to be compared to all others), and to level 3 for the third comparison (because 
level 3 is to be compared to all others). The value “-1” is assigned to level 4 for all three 
comparisons (because it is the level that is never compared to the other levels). The value “0” is 
assigned to all other levels (see table 10). 
Given that the expected values of the dummies specified in such a way are always zero4, we can 
obtain the baseline transition rate as: 

 
)(0 iagef

i ebaseline += β  
 
The estimated coefficients related to covariates express multiplicative changes to be applied at the 
baseline age profile in order to evaluate the estimated risk for each year of age. In other words, the 
effect of a covariate can be seen as a vertical shift throughout the whole range of age. For example, 
figure 4 shows the multiplicative effect of the level of education for an unspecified transition. 
 
 
Table 10.  Deviation coding for level of education 

EDU 

Dummy 1 
(Primary vs. 

mean) 

Dummy 2 
Low. sec. vs 

mean 

Dummy 3 
Upp. sec vs 

mean 
Primary 1 0 0 
Lower secondary 0 1 0 
Upper secondary 0 0 1 
Tertiary -1 -1 -1 
  

 
However, very often the effect of a covariate shows a combination of vertical and horizontal shifts. 
Therefore, the proportional assumption on the whole age rank appears too simplistic. MAPLES 
adopts the following solution: the multiplicative effect of a covariate is estimated separately within 
three different sub-intervals of ages delimited by two knots. These knots are fixed systematically at 
the 33rd and 67th percentiles of the event distribution (i.e. at the ages x1 and x2 at which, respectively, 
33% and 67% of all the events are already experienced). In other words, each sub-interval contains 
one third of the total number of events. 

 
With this new configuration, the model contains, other than the baseline transition rate, a set of 
dummy variables, one for each combination of independent variable and the three age sub-intervals. 
For example, the effect of education (with 4 levels) is estimated by including 12 dummy variables 
in the model equation. 
In figure 5 we can see coefficient estimates and transition rates for the effect of EDU on a generic 
transition TRX. In this example, knots are computed at age 30 and 34.   
                                                 
4 More precisely, the expected values are zero if the number of cases is (approximately) the same for each level. In our 
analysis this condition is satisfied given the structure of our data-matrix (similar number of rows for each combination 
of levels of covariates). 
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Fig. 4 Multiplicative effects of covariates estimated with additive model. 

 
 
Fig. 5 Proportional effects of education on the transition TR1. 

 
 
 
5.3 Smoothing procedure 
 
Transition rates for a sub-sample characterized by a specific value of covariates, result in non-
continuous curves. The next step is the specification of a smoothing procedure that permits to obtain 
continuous curves which remain consistent with the estimated relative risks for each value of 
covariates and for each sub-interval of age.   
In order to do so, let us consider the interval of age that starts at the midpoint of the first subinterval 
(point A in figure 6: age at which at least 16% of the events have been experienced) and ends at the 
middle point of the second sub-interval (point B: median age). At point A, the transition rate is the 
product of the baseline at A by the relative risk associated to the covariate level for the first sub-
interval (β1). At point B the transition rate is the baseline at B multiplied by the relative risk for the 
second sub-interval (β2). When we proceed over the age axis from A to B, the continuous transition 
rate is obtained by multiplying the baseline by a weighted means of β1 and β2. The weight of β1 is 
decreasing from a value close to 1 (at A) to a value close to 0 (at B) whereas the weight of β2 is 
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increasing in the opposite way. The trend of weights is not linear but follows a logistic curve. The 
same procedure can be applied to the interval (B, C). 
In the example of figure 6 we focus on the effect of primary level of education on transition’s risks 
(all the other effects are not shown). Age at point A is 26 years, and 28 years at point B. We have 
that: 
 

3.209
1.175

A A

B B

r baseline
r baseline
= ⋅
= ⋅

 

 
 
Fig. 6. Smoothing procedure. Mid-points fixed according to 16th, 50th and 84th percentiles. 

 
 

 
For each age ( , )x A B∈  the transition rate is  
 

( )* 3.209*(1 ) 1.175*( )x x x xr baseline wgt wgt= − +  
 

Weights wgt follow a logistic curve and they are computed as follow: 
 

( )

1    for ( 1) to ( 1)
1x h x Awgt x A B

Ke− ⋅ −= = + −
+

 

 
and  
 

( )*
2

B A h

K e
−

=  
 

where h is the growth rate and it is computed as 
 

5
B Ah e −=  

 
This means that h is equal to 1 when the length of the interval (A,B) is 5. In this way, the shape of 
the logistic curve remains the same independently from the interval’s length (see fig. 7). 
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The same procedure could be applied to the second jump of the transition rate curve. Focusing on 
points B and C we have 
 

1.175
0.541

B B

C C

r baseline
r baseline
= ⋅
= ⋅

 

 

 
Fig 7. Logistic curve with h=1 showing weights for a specific point x 

 
 
Fig. 8 Smoothed curves 

 
 
 
For each age ( , )x B C∈  the transition rate is  
 

( )* 1.175*(1 ) 0.541*( )x x x xr baseline wgt wgt= − +  
 

where 
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( )

1    for ( 1) to ( 1)
1x h x Bwgt x B C

Ke− ⋅ −= = + −
+

 

 
and  

( )*
2

B A h

K e
−

= . 
 

This procedure may be repeated for all levels of covariates. The resulting smoothed curves appear 
as in figure 8. 
 
 
5.4 Tail-flattening procedure 
 
Age profiles are obtained for the age interval (agemin, agemax). Working with retrospective data we 
can fix the limits respectively to 15 and 100 but we must face with non-zero exposure time age 
classes. Besides, data may be not available for the older classes when in a survey individuals older 
than a certain age have not been interviewed. Generally speaking we can define: 
 

agemin: the lowest available age (≥15) with non zero exposure time  
agemax: the highest available age (≤100) with non zero exposure time  

 
By applying MAPLES procedure, we may have non-zero baseline risk at agemin and/or at agemax. 
Thus, if we can assume that outside (agemin, agemax) the baseline is zero, there are two jumps in the 
edges of the specified age interval. For example, in figure 9 we see two discontinuities in agemin=20 
and agemax=63. MAPLES can avoid this situation by “flattening” the risk in the tails of the age 
profiles through the application of logistic weights to the baseline. Let us call D the age at which 
5% of the events have been experienced, in the left tail the weights are: 
 

min min( )

1    for  to ( 1)
1x h x ageweight x age D

Ke− ⋅ −= = −
+

 

 
where 
 

min( )*
2

D age h

K e
−

=  
 

and  h is fixed arbitrarily to 
 

10
B Ah e −=  

 
If E is the age at which 95% of the events have been experienced, in the interval right tail the 
weight to be applied to baseline are:  
 

max max( )
11    for ( 1) to 

1x h age xweight x E age
Ke− ⋅ −= − = +

+
 

 
In fig. 9 we can see the resulting flattened tails (in red). This procedure could also be useful in order 
to avoid odd values caused by few events. 
Given that the effect of covariate is a multiplicative change to be applied to the baseline, age 
profiles for a specific level of one covariate will automatically flattened in the tails. 
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When the hypothesis that transition rates are zero outside the interval (agemin, agemax) is not 
applicable, it has no sense to flatten age profiles in one or in both tails. For example, for transition 
TR3 (1st marriage death of spouse) rates are not decreasing at the older ages. In general, the tail-
flattening procedure is optional and it can be excluded in one of the two tails or in both of them. In 
figure 10, the baseline risk has flattened left tail and non-flattened right tail. In this case, we do not 
know transition rates at the right of agemax and we need to complete the shape of age profiles for 
older ages using, for example, extrapolation methods. 
 
 
Fig.9 Baseline with discontinuities (black line) and with flattened tails (red line). Rates are 
assumed to be zero outside the interval (20, 63). 

 
 
 
Fig.10 Baseline with flattened left and non-flattened right tail. 
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5.5 The MAPLES output 
 
Estimates are calculated separately for men and women. Moreover, our approach is to introduce 
covariates (EDU, MAR, CHI, LIV) one by one under the independent hypothesis between couples 
of covariates. A single covariate, however, implies that in model equation (2) the number of 
included dummy variables (k) is equal to the number of levels multiplied by 3 (number of age 
subintervals). 
The final stage of the procedure provides: 

- a vector of ages within a selected age range; 
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- a vector containing the baseline age profile. It is obtained through the estimation of the 
baseline in a model without covariates (i.e. by fixing k=0 in the model equation 2); 

- a set of vectors containing relative risks for each year of age and for each level of allowed 
covariates. For example, transition TR2 has a maximum of 4 vectors for EDU (one for each 
level of education) and a maximum of 4 vectors for CHI (one for each number of children 
ever born). Data availability and low numbers of events may group levels and, therefore, 
may reduce the number of vectors. Relative risks for each year of age are computed as ratio 
between the smoothed transition rate (see section 2.3.4) and the relative baseline rate. An 
example, concerning transition TR1 in Italy, is reported in table 11. 

 
As additional feature, MAPLES tests the statistical significance of the additional covariate X in the 
model by dropping it and noting the change in the deviance. The fitted models are compared using 
an analysis of deviance table. The tests are usually approximated, unless the models are un-
penalized (Wood, 2006). Therefore, for each variable we have a pvalue relating to the comparison 
between base model (without covariates) and model with covariate X. 
 
 
Table 11. Baseline and relative risks (TR1. Fss Italy 2003. Women) 
age baselin prim lowsec uppsec tert        noch        1+ch par_hom no_part  partner 
15 3e-04 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
16 9e-04 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
17 0.0021 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
18 0.0048 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
19 0.0092 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
20 0.0153 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
21 0.0228 2.4896 1.7982 0.6402 0.3489 0.5977 1.6731 0.8793 0.5446 2.0882 
22 0.0316 2.4019 1.7521 0.6601 0.3754 0.623 1.6276 0.9045 0.5476 2.0369 
23 0.0423 2.2787 1.6875 0.688 0.4125 0.6585 1.5638 0.94 0.5518 1.9649 
24 0.0555 2.0532 1.5691 0.7391 0.4806 0.7235 1.447 1.0049 0.5595 1.833 
25 0.0711 1.77 1.4205 0.8032 0.566 0.8051 1.3003 1.0865 0.5692 1.6675 
26 0.0873 1.5445 1.3022 0.8543 0.6341 0.8701 1.1834 1.1514 0.5769 1.5357 
27 0.101 1.4213 1.2375 0.8822 0.6713 0.9056 1.1196 1.1869 0.5811 1.4637 
28 0.1096 1.3336 1.1915 0.902 0.6977 0.9309 1.0742 1.2121 0.5841 1.4124 
29 0.1127 1.2926 1.1683 0.9305 0.7293 0.9323 1.0727 1.2064 0.5923 1.4016 
30 0.1114 1.235 1.1357 0.9705 0.7738 0.9341 1.0706 1.1983 0.6039 1.3865 
31 0.1071 1.1295 1.076 1.0436 0.8552 0.9376 1.0667 1.1835 0.6251 1.3589 
32 0.1001 0.9971 1.0011 1.1355 0.9573 0.9419 1.0618 1.1649 0.6517 1.3242 
33 0.0901 0.8917 0.9415 1.2087 1.0387 0.9453 1.0579 1.1501 0.6728 1.2965 
34 0.0771 0.8341 0.9089 1.2487 1.0831 0.9472 1.0558 1.142 0.6844 1.2814 
35 0.0626 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
36 0.049 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
37 0.0382 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
38 0.0309 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
39 0.0269 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
40 0.0253 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
41 0.0255 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
42 0.0261 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
43 0.0258 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
44 0.0231 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
45 0.0182 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
46 0.0123 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
47 0.0074 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
48 0.004 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
49 0.0021 0.7931 0.8857 1.2771 1.1148 0.9485 1.0543 1.1362 0.6926 1.2707 
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5.6 Rare transitions or few events in the dataset 
 
Our effort in developing MAPLES is to take into account the greatest possible number of 
transitions. However, it is possible that for some transitions, the number of events is very low. This 
is more frequent when the dataset has a limited number of cases. With a small number of events, it 
is possible that relative risks could be biased. In order to control for such situations, we introduced 
specific limitations. We may specify a number nmin in such a way that, for a generic transition TRX 
and for each sex: 
 

1.  the total number of events must be higher than nmin. 
 
2. the number of events for each level k of a given covariate X and within each subinterval of 

age (defined by knots and containing at least one third of the total number of events) must 
be higher than nmin/3 (this implies that the number of events for level k must be higher than 
nmin). In other words, considering a covariate X  with K levels, we impose that  

 
events(  and age.int )  for 1..  and 1..3X i j nmin i K J= = >= = =  

 
The most extreme case is when condition 1 is not fulfilled: estimates can be hardly considered 
reliable. In this situation a possible solution may be to extend the observation window. When we 
increase the window length, we take into account longer segments of life and, therefore, more 
events. However, we refer to behaviors that are experienced in a more distant past.  
When the total number of events is sufficiently high but for level k of covariate X the condition 2 is 
not satisfied, the strategy is to group level k with a nearby level. If condition 2 is still not satisfied 
when only two levels remain for X, the covariate is excluded from the analysis. 
As an example, let us consider the situation depicted in table 12 (transition TR1, women). In case a. 
we have only level of education (EDU). This means that we do not have enough information to 
consider CHI whereas LIV is not allowed in TR1. If we fix nmin=30, condition 1 is satisfied given 
that the total amount of events are 297, but condition 2 is not satisfied for level “tertiary” because in 
the first age interval we have only 4 events (<nmin/3=10). This level is grouped with “uppsec” and 
variable EDU will have 3 levels (“primary”, “lower secondary”, and level 3 “uppsec+” given by the 
aggregation of “upper secondary” and “tertiary”). With this new configuration, condition 2 is 
always fulfilled. 
 
 
Table 12. Number of events for the transition TR1. 
Case a. 
Number of events - WOMEN 
 int1 int2 int3 tot 
prim 11 28 23 62 
lowsec 43 57 30 130 
uppsec 12 33 18 63 
tert 4 20 18 42 
 
 
 

Case b.  
Number of events - WOMEN 
 int1 int2 int3 TOT 
prim 10 6 6 22 
lowsec 2 4 5 11 
uppsec 7 6 0 13 
tert 2 0 4 6 
no ch 2 2 6 10 
1+ ch 13 16 13 42

 
In case b, with the same value of nmin=30 condition 1 is satisfied (52 events) but both covariates 
(EDU and CHI) are excluded because there no enough events to justify at least two levels. In fact, 
for EDU if we group “tert” and “uppsec” we have 9, 6 and 4 events respectively in the first, second 
and third subinterval, condition 2 is never satisfied; if we group “tert”,”uppsec and “lowsec” 
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together, condition 2 is not satisfied in the third interval. For CHI, condition 2 is not fulfilled for 
level “no ch”. 
The progressive aggregation of levels within each covariates follow the scheme presented in table 8: 
when condition 2 is not satisfied, MAPLES reduces the code number by one. As a consequence, we 
may have covariates with 2, 3, or 4 levels. 
These checks on number of events permit to avoid age profiles estimated from very few events, 
which gives stability to the estimates. 
 
 
5.7 Extension: combination of covariates 
 
Let us call r(x, c1, c2, c3) the transition rate at age x for a specific transition TRX, for individuals 
with values c1, c2, c3 respectively for covariates C1, C2, C3. 
 
Through the application of MAPLES we have for a given transition TRX and a given sex, a set of 
relative risks for each age x and for each level of covariates: 
 

( , )   :  min( )  max( )     1   edu edu edu edurrisk x l x x to x and l to N=  
( , )   :  min( )  max( )     1   mar mar mar marrrisk x l x x to x and l to N=

 ( , )   :  min( )  max( )     1   chi chi chi chirrisk x l x x to x and l to N=  
( , )   :  min( )  max( )     1   liv liv liv livrrisk x l x x to x and l to N=  

 
where Nedu, Nmar, Nchi and Nliv are the number of level of the relative covariate. 
These four sets are estimated in separated models. Given the hypothesis of independence between 
covariates, we can easily compute an age profile for every combination of levels of covariates. 
Generally speaking, transition rate at age x for individuals characterized by a specific combination 
is: 
 

( , , , , ) ( ) ( , ) ( , ) ( , ) ( , )edu mar chi liv edu mar chi livr x l l l l baseline x rrisk x l rrisk x l rrisk x l rrisk x l= ⋅ ⋅ ⋅ ⋅  
 
where baseline(x) is the baseline transition rate estimated in the model without covariates and 
expresses the grand mean of transition rates for all possible combinations of covariates. 
For example, if we consider transition TR1 we have three possible covariates (EDU, CHI, and LIV) 
and a number of combination equal to 4*4*3=48 for each age x in the age range (e.g. from 15 to 
49). Let us suppose that we want to know transition rates to first marriage for women aged x=30 
with a tertiary level of education, childless and cohabiting. The application of MAPLES gives us 
the following rates (see section 5): 
 

( ) 0.1114baseline x =  
( 30, " ") 0.7738edu edurrisk x l tertiary= = =  
( 30, " ") 0.9341chi chirrisk x l noch= = =  
( 30, " ") 1.3865liv livrrisk x l partner= = =  

 
The required rate is, then: 
 

( 30, " ", " ", " ")
0.1114 0.7738 1 0.9341 1.3865 0.1116419

edu chi livr x l tertiary l noch l partner= = = = =

= ⋅ ⋅ ⋅ ⋅ =
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6. An application to Italy 
 
We conclude the paper by describing an application to real data from Italy. These data come from 
the multipurpose survey called “Famiglia e soggetti sociali (FSS-IT)”, the survey associated with 
the Generations and Gender Programme (Vikat et al., 2007). Carried out at the end of 2003, this 
survey contains wide retrospective information on life course trajectories and transition to 
adulthood, including data on the history of marital unions, cohabitations (followed by a marriage or 
not) and marital disruption, for a large sample of the resident population. The retrospective nature 
of the survey makes it possible to update the collected information and to follow the same 
individual over time. 
 
Table 13. Missing data in FSS-IT  
> chkfile("ITALY.dat") 
[1] ____________________________________________ 
[1] Check available data 
[1] WARNING:mdiv missing 
[1] WARNING:mved missing 
[1] WARNING:meit missing 
[1] WARNING:ydiss missing 
[1] WARNING:mdiss missing 
[1] ____________________________________________ 

 
 
Table 14 Transitions that can be analyzed with Italy FSS-IT 
TR1 never-married  married (1st marriage) 

TR2 married (1st marriage)  divorced 

TR3 married (1st marriage)  widowed 

TR4 divorced  married (2nd marriage) 

TR5 widowed  married (2nd marriage) 

TR6 at parental home (never in union)  first union 

TR7 at parental home  alone/with others (never in union) 

TR8 alone/ with others (never in union)  first union 

TR9 first union  separated  (after 1st union disruption) 
TR10 alone or with other persons (after the 1st union disruption)  
with a partner (2nd union) 
TR11 childless   child 

TR12 1 child 2 children 

TR13 2 children  3 children 

TR14 3 children  4 children 

 
 
Table 15. Consistency check on FSS-IT. 
> consistency("ITALY.dat") 
[1] Consistency check. File: ITALY.dat 
[1] ____________________________________________ 
[1] 1st union<birth+14 - noc: 8 
[1] 1st marriage<birth +14 - noc: 13 
[1] divorce<=1st marriage - noc: 1 
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[1] death of spouse<=marriage - noc: 18 
[1] 2nd union<=first union - noc: 2 
[1] 1st child<birth + 14 - noc: 26 
[1] 2nd child<1st child -  noc: 18 
[1] 3rd child<2nd child - noc: 11 
[1] 4th child<3rd child - noc: 5 
[1] ____________________________________________ 
 
 
In the Italian dataset, the main limit is the lack of dates relating to first union disruption (ydiss and 
mdiss) (table 13). This implies that  TR9 and TR10 cannot be analyzed (see table 14). Consistency 
check (table 15) shows a lower number of inconsistent cases. 
 
As an example of application, we consider transition TR1 (bever married->1st marriage) and TR12 
(1st birth->2nd birth). The estimated age profles for women are plotted in fig 11. The window of 
observation is fixed at 5 years before the interview for both the transitions. The minimum number 
of events (nmin) is equal to 30 for TR1. This constraint reduces the number of categories for 
variable CHI to two categories (childless and with one or more children) whereas EDU and LIV 
have the maximum number of categories, respectively 4 and 3. For TR12 nmin is fixed at 10 in 
order to maintain a comparable number of categories. Nevertheless, upper secondary and tertiary 
level of education are grouped together as well as all the categories that refers to ever married 
women (first marriage, second marriage, and divorced/widowed) 
 
As far first marriage is concerned, we can see that in Italy, the higher risk is experienced by women 
around 30 years of age and a low level of education (primary or lower secondary) tends to increase 
transition rates at lower ages. After 35 years of ages the effect of education reduces substantially. 
Moreover, women with a partner and/or with children show higher risks of marriage especially 
between 20 and 30 years of age. 
Transition rates for the second child show increases rapidly after the 20th birthday and they remains 
high up to 35-36 years of age. The effects of covariates show a clear anticipation for the calendar of 
second births among women with a primary level of education and a strong negative effect given by 
the condition “not-married” on second birth rates, which confirms the low diffusion of births out-of-
wedlock in Italy.  
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Fig.11a Estimated age profiles for Italy (survey held in 2003). Transition TR1 (never married->1st 
marriage) according to level of education, children ever born and living arrangements. 

 
 
 
Fig.11a Estimated age profiles for Italy (survey held in 2003). Transition TR12 (1st birth  2nd 
birth) according to level of education and living arrangement. 
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Appendix 

 
BOX 1. Rules for the preparation of the initial dataset 
1.  The record structure of the data file must be as shown in table 4. The same variable names 

specified in this table must be used. Other names are not recognized and the meaning of the 
dates strictly follows the indication given in table 4. However, the order of variables is not 
important (variables could be sorted in a different way). 

 
2.  The initial dataset must contain id, weight, date of birth (ybirth, mbirth), date of interview (yint, 

mint), sex and education. All other dates are optional. 
 
3.  When the individual has not experienced an event, the date (year, month) must be coded as 

empty cells (blank). Other codes like “na”, “999999”, “mv”, etc are not accepted. R will read 
empty cells as “Not available” information and it will call them as “NA” in the internal dataset. 

 
4.  A missing year means that the related event has not been experienced. If the individual has 

experienced a specific event but the year is not available, the case must be dropped from the 
initial dataset.  

 
5.  Dates may contain missing months (totally or partially). In that case, virtual months are 

computed as random numbers with the constraints specified in table 6. 
 
 
 
BOX 2 The chkfile utility 
The utility chkfile() provides basic information for the specified dataset. In particular, it 
specifies missing months and missing years.  
The syntax is: 
 
chkfile(filename) 
 
The application to the Italian dataset gives the following output 
 
> chkfile(“ITALY.dat”) 
[1] ____________________________________________ 
[1] Check available data 
[1] WARNING:mdiv missing 
[1] WARNING:mved missing 
[1] WARNING:mexit missing 
[1] WARNING:ydiss missing 
[1] WARNING:mdiss missing 
[1] ____________________________________________ 
 
Given this output and referring to table 5, we are able to identify which transition can be studied. 
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BOX 3 The consistency utility 
The utility consistency() is a tool included in MAPLES library that executes all the 
consistency checks presented in table 7 for a specified data file. It permits the user to take a first 
glance to the quality of the initial dataset. The syntax is  
 
consistency(filename,showid=T) 
 
Option filename   Input datafile (with path)  
 
The application of the utility consistency to the Italian dataset FFS 2003 called ITALY.dat shows the 
following output (noc means “number of cases”): 
 
> consistency("ITALY.dat") 
[1] Consistency check. File: ITALY.dat 
[1] ____________________________________________ 
[1] 1st union<birth+14 - noc: 8 
[1] 1st marriage<birth +14 - noc: 13 
[1] divorce<=1st marriage - noc: 1 
[1] death of spouse<=marriage - noc: 18 
[1] 2nd union<=first union - noc: 2 
[1] 1st child<birth + 14 - noc: 26 
[1] 2nd child<1st child -  noc: 18 
[1] 3rd child<2nd child - noc: 11 
[1] 4th child<3rd child - noc: 5 
[1] ____________________________________________ 
Option showid=T shows the ID (identification number of inconsistent cases. This could help the 
user to take a look at the original dataset. The output becomes: 
 

> consistency("ITALY.dat",showid=T) 
[1] Consistency check. File: ITALY.dat 
[1] ____________________________________________ 
[1] 1st union<birth+14 - noc: 8 
[1] Cases ID: 54301 292501 394902 609301 731601 1081202  1512301 1689401   
[1] 1st marriage<birth +14 - noc: 13 
[1] Cases ID: 54301  174901  92501  311501 394902  480702 609301  731601    
[10] 1081202 1512301 1689401 1837801 1876001   
[1] divorce<=1st marriage - noc: 1 
[1] Cases ID: 901903    
[1] death of spouse<=marriage - noc: 18 
[1] Cases ID: 4901   339401 347101 613003 616501 723604  907002 959301    
[10] 990701  1112901 1189801  1418001 1452901 1481901  1605601  1605602 1792803   
[19] 1802501   
[1] 2nd union<=first union - noc: 2 
[1] Cases ID: 486401   1876001   
[1] 1st child<birth + 14 - noc: 26 
[1] Cases ID: 54301  75202 122201 150804  164902 312102  330602  480702    
[10] 486202  731601 757502  774202  979301   1081202  1223202   1252402   
1452602   
[19] 1467402  1480401  1512301  1592802  1689401 1713702 1836802 1876001   
1902402   
[1] 2nd child<1st child -  noc: 18 
[1] Cases ID: 39601  390001  462002 578001  609301 609302  724201 726702    
[10] 963801  963802 1001501 1001502 1417401 1417402 1497002 1540301 1540302   
[19] 1550302   
[1] 3rd child<2nd child - noc: 11 
[1] Cases ID: 90001 322402 390001  609301 609302 963801  963802  1001501   
[10] 1001502  1550301 1897001   
[1] 4th child<3rd child - noc: 5 
[1] Cases ID: 143401  322401  528002  609301  609302  
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BOX 4. The dataset function 
The function dataset() prepares data for the estimation of age profiles. In details, it loads the 
initial data set (filename), checks for missing dates, detects inconsistent dates, inputs missing 
months and computes decimal dates, ages and status variables. The output is a data frame that is 
ready to be processed by the function ageprof() (see below) 
The syntax is 
 
dataset(filename) 
 
An example of application: 
> d<-dataset("ITALY.dat") 
[1] Dataset extracted from ITALY.dat is ready. 
 
 
 
 
BOX 5. The ageprof()function. 
ageprof()is the main function in the MAPLES package. It computes age profiles for a specific 
transition and for a given data.frame.  
 
The syntax is 
 
ageprof(d,tr,wl=5,minage=15, maxage=100,cpa=T,outf=F,nmin=30 
 
Arguments are: 
 
Option d  d is the data.frame containing initial data (No default value). It must be 

prepared through the function dataset() 
Option tr  Specifies which transition have to be studied. Allowed values: integer from 1 

to 14 (No default value). 
Option wl   Specifies the length of the observation window (number of years before the 

interview). Only events and exposure times referring to this window will be 
considered in the analysis. Allowed values: integer from 3 to 30 (default = 5)  

Option minage Defines the lower limit of age range to be considered (default = 15) 
Option maxage Defines the upper limit of age range to be considered (default = 100) 
Option outfile  Creates a text file containing all the standard output (No default value). 
Option cpa Specifies the kind of transition rates. If TRUE cohort-period transition rates 

are computed; otherwise ageprof() computes cohort age transition rates 
(default = TRUE) 

Option outf If TRUE, creates a text file with standard output (default = TRUE) 
Option nmin Specifies the minimum number of events for each level of covariates (to be 

considered separately for each sex): a number of events lower than nmin 
causes the aggregation of proximate levels. The same effect is done if for 
each level and in each subinterval of age (defined by knots and containing at 
least one third of the total number of events) we have lower than nmin/3 
events. If the total amount of events (independently by levels of covariates) is 
lower than nmin a warning message appears in the standard output. 
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Option lft If TRUE age profiles are flattened in the left tail of the age interval, i.e. before 
the age at which 5% of the events have been experienced (default= TRUE) 

Option rgt If TRUE age profiles are flattened in the right tail of the age interval, i.e. after 
the age at which 95% of the events have been experienced (default= TRUE) 

 
 
The standard output of ageprof()is a list containing the following objects: 
 
$name  String containing the name of the considered transition  
$minage value of parameter minage 
$maxage value of parameter maxage 
$outf value of parameter outf 
$cpa value of parameter cpa 
$nmin value of parameter nmin 
$lft value of parameter left 
$rgt value of parameter right 
$knot_m   Vector of 2 elements containing knots (Men).  
$cov_m   Matrix containing information about covariates (code as defined in table 8; 

number of allowed levels; pvalue: anova test that compares model without 
covariates and model with the specified covariate) (Men).  

$numev_m  Matrix with number of events according to age sub-intervals and covariate 
categories (Men). 

$rrisk_f Baseline transition rates and relative risks for each levels of allowed 
covariates (Women). 

$knot_f   Vector of 2 elements containing knots (Women).  
$cov_f   Matrix containing information about covariates (code as defined in table 8; 

number of allowed levels; pvalue: anova test that compares model without 
covariates and model with the specified covariate) (Women).  

$numev_f  Matrix with number of events according to age sub-intervals and covariate 
categories (Women). 

$rrisk_f Baseline transition rates and relative risks for each levels of allowed 
covariates (Women). 

 
However, focusing on more recent events is crucial when we want to use rates for population 
forecasts. However, when we face transitions with few events, we can extend the length of the 
window of observation in order to gather more events and, then to obtain more stable estimates. The 
user can explicitly specify the value of wl (default value is 5 years). 
It could also be useful to reduce the value of nmin. This may give the opportunity to have more 
covariates and/or less aggregated levels. However, a low the value for this parameter requires a 
stronger accuracy in the evaluation of the output. As a general rule, it is advisable to run ageprof 
with an high value of nmin (>=30) in order to have more stable estimates and only in second 
instance, try to reduce nmin and check if results remain similar to the previous ones. 
NOTE: the automatic aggregation of categories may be excluded by setting nmin=1 
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BOX 6. Plot.ageprof() utility. 
After the execution of ageprof, we can obtain a graphical representation of age profiles for a 
specified sex through the utility plot.ageprof. This command takes as main argument the 
standard output of ageprof(). This utility takes into account the significance of covariates as 
well: when the pvalue of anova test between model without covariate and model with the specified 
covariate is higher than 0.05, curves are plotted in shaded gray. This permits to have an immediate 
glance on significant covariate. 
The syntax is: 
 
plot.ageprof<-function(tab,sex,edu=T,mar=T,chi=T,liv=T) 
 
Arguments are: 
 
Option tab   tab is a list containing the standard output of ageprof()(No default 

value). 
Option sex   Specifies for which sex transition rates have to be plotted. (No default 

value). 
Option edu If  false excludes plots for covariate “Level of education (EDU)” 
Option mar If  false excludes plots for covariate “Marital status (MAR)” 
Option chi If  false excludes plots for covariate “Own children ever born (CHI)” 
Option liv If  false excludes plots for covariate “Living arrangements (LIV)” 
 
 

 


