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Abstract: The graduation is a name for a class of techniques in the actuarial mathematics, which produce 
smooth estimates for probabilities of dying in life tables obtained from empirical data. The calculation of 
these probabilities for ages greater than 85 (e.g. at the end of the life table) is usually performed by the 
extrapolation of graduated values following Gompertz - Makeham law of mortality (the King - Hardy 
method). Nowadays, several authors have observed that this method overestimates the real probabilities. 
That is why other methods of extrapolation have been examined (Kannisto, Koschin and others). The 
purpose of the article is to present a graduation method, which in calculation process fits the logarithm of 
specific mortality rates by a cubic parabola. Moreover, alternative ways of ending the life table are 
proposed.  
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1. INTRODUCTION 

Life tables represent a well-known basic tool of actuarial mathematics, which is 
efficiently applicable in other branches, as well. They contain the age specified 
probabilities of dying and express the subsequent dying out of the hypothetical 
population cohort. The key elements of the tables, the probabilities of dying, are 
estimated from the empirical statistical data. In accordance with the character of the used 
input data, several types of life tables can be distinguish (for details see e.g. Browers et 
al. 1986 or Keyfitz 1977). In this paper we shall due with the complete life tables, where 
the one-year age intervals are used.  

The construction of life tables goes out from the set of empirical age specified rates 
of mortality Mx = Dx / Px , where Dx is the observed number of dyed in the age interval 〈x, 
x+1) during a given calendar year and Px is the mean number of living persons aged 〈x, 
x+1) in the midyear of the same calendar year, or more exactly, the number of person-
years lived by the persons aged 〈x, x+1) in this population, x = 0, 1, ..., ω.  

Using the above data, the empirical probabilities of dying are being calculated using 
one of the following two almost equivalent formulas  

Qx  = 
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  or    Qx  = 1 – exp (–Mx) . 

They can be considered as the starting (initial) estimations for the real probabilities, 
which are unknown. In the next step they are improved (smoothed) by some method of 
graduation. Usually, in the main part of tables (x = 4, ... 85) some kind of the moving 
average procedure is applied. For the old ages („at the end of the table“, x > 85), behind 
the modus of the number of dyed, the starting estimations are loaded with a great random 
error, and therefore extrapolation methods are being preferred. Until recently, only a 
small attention was paid to the construction of the end of the tables. Firstly, the actuarial 
praxis did not require it, because very old people have represented only a relatively small 
group of population and did not mean a significant risk for the insurance companies. 
Secondly, because of lack of the reliable data, the inaccuracies in computing methods 



were comparable with the random errors. Nowadays, as a consequence of the population 
ageing, the ratio of very old people has increased and they create an interesting group of 
potential clients for pension funds. Inaccuracies or overestimation of the probability of 
dying could significantly influence the economy of the funds. On the other hand, during 
the relatively long period of exact statistical evidence, a sufficiently great amount of 
reliably data was collected. Although neither today the quality of data is absolute, it 
enables to make more solid conclusions concerning the human mortality.  

Until now, the statistical offices use various computation procedures, containing 
several simplifying assumptions. The tables are usually closed by an artificial 
assumption, that all persons will die before reaching certain age ω, i.e. by setting lx = 0 
for x large enough (e.g. ω = 101 in ŠÚ SR 2002). Here, lx is the number persons in 
hypothetical cohort at exact age x. For ages x = 85, … 100 years the probabilities of 
dying are usually smoothed (graduated) by King-Hardy method (Pecka  1989, Mészáros 
2000), which assumes the force of mortality in the form of modified exponential curve 
(Gompertz - Makeham law, see below). Recent investigations show that this assumption 
overestimates the real values, i.e. the probability of dying does not grow in very high ages 
so fast as the modified exponential supposes. For this reasons some attempts were made 
to replace the exponential curve by other, slower growing curve (Thather et al. 1998, 
Koschin 1999).  

 The aim of this paper is to present a new attempt with a new model for the force of mortality. The 
purpose is to obtain more realistic life table, which would be relatively stable in time and which would 
eliminate the mentioned overestimation of probabilities of dying in high ages. So they would be suitable for 
long-term prognoses, as well.   

 

2. CHARACTERISATION OF USED INPUT DATA  

Below we shall apply the new model on the recent data for Slovak Republic (SR). 
The data are collected by Statistical Office of the Slovak Republic (ŠÚ SR) and in 
general are considered as appropriately reliable. In the same time, on this data we shall 
illustrate its motivation and the possible problems connected with the standard approach.  

By the calculation of initial estimations of probability of dying (empirical 
probabilities) Qx a surprising fact occurs. These empirical probabilities do not growth 
nearly exponentially according to the Gompertz - Makeham model, but after a certain age 
(round 95 years) the do not grow at all. This is true not only for a single year (what could 
be caused by chance) but as a rule. For example, in 1999 for Slovak males Q98 decreased 
on the level as Q60. Taking the confidence intervals for qx , the hypothesis that qx does not 
decrease is rejected.  

The decrease of probability of dying in some age interval itself would be not a reason 
for doubt about the quality of data. This can be observed in many populations (e.g. in 
ages 0-10 or 21-24) and is biologically interpretable. The reason for distrust is other. For 
instance, the assumption qx < 0.4 for x > 98 implies, that in SR would live much more 
centenarians than the statistical evidence shows. Therefore, the values qx < 0.4 for x > 
100 have to be regarded as unrealistic. On the other hand, qx = 0.6 for x > 100 would lead 
to the conclusion, that in Slovakia there lives in average only 0.01 people aged 108 years, 
what contradicts the facts, as well (see ŠÚ SR 1998, ŠÚ SR 2002).     



The causes of unreliability of input data for high ages may be various. First of all, in 
high ages the standard deviation of occurrence of events is relatively large, what causes 
great random errors (so called the „small numbers problem“). However, the differences 
between theoretical probabilities and their empirical estimations use to be larger than can 
be explained by randomness, both in males and in females. Thanks to the compulsory 
registration of deaths, their numbers seem to be relatively exact. Hence, the main source 
of inaccuracies should be searched in the numbers of living, which are evidently 
overestimated.  

This phenomenon occurs not only in Slovakia. Similar discrepancies are reported 
also from Czech Republic (Koschin 1999) and other developed European countries (e.g. 
Thatcher et al. 1998).  

Fig. 1. Numbers of males and females aged 98 in SR, July 1st each year.  Source: ŠÚ SR.  
 

ŠÚ SR regularly publishes the midyear numbers of lives by age (e.g. ŠÚ SR 1999). 
The last figure (P100+) is cumulated, and the distortion caused by the cumulative reflects 
also in figures for age 99. That is why we have examined the numbers of lives aged 98 in 
the second half of the 20th Century (Fig. 1.). The data from the year of Census are pointed 
up by a dark dot. As one can see, the figures in the year of Census are only a small 
portion of the figures before Census. This is probably a consequence of exact evidence of 
natural movement and inexact evidence of migration combined with inaccuracies of 
Census. The errors are cumulated in higher ages. For this reasons the standard empirical 
data are for x > 95 practically inapplicable. The only data of some value in this age group 
are those from Census. That is why the empirical basis for this paper creates the data 
from Census 2001.  

 

3. SELECTION OF A MODEL  

As usually, for x ≥ 0 let us denote the point table variables (related to the exact age 
x):  the number of living by lx , the number of ever lived years for persons in the cohort by 
Tx , the life expectancy by ex  , and the force of mortality by µx  , respectively, all at exact 
age.  
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Further, denote the following interval table variables: the number of died by dx , the 
number of lived persons-years by Lx , the age specific mortality rate by mx = dx /Lx , and 
the probability of dying by qx = dx /lx , respectively, all in the age-interval 〈x, x+1). (For 
exact definitions and details see e.g. Keyfitz 1977, Browers et al. 1986, Cipra 1990). The 
above variables are tied by known relations  
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t dtµ )  ≅  1 − exp (− µ x+1/2)  ≅  1 − exp (− m x) . 

As mentioned above, in the main part of tables (x = 4, ... 85) as the estimation of 
model probabilities of dying qx the graduated empirical probabilities Qx used to be taken. 
For high ages it is not very appropriate, because of both great random deviation in 
number of died and the mentioned inaccuracies in evidence of living. A more appropriate 
approach is the extrapolation of some parametric curve. Regarding the above remarks, the 
following types of fitting curves for µx or qx should be taken into account:  

a) (modified) exponential curve (Gompertz - Makeham law, method used by ŠÚ SR, 
too); 

b) slower growing convex curve (Koschin 1999); 

c) linear function (tangent line to the graph e.g. in x = 85); ????  

d) growing concave curve (e.g. parabola with maximum behind age ω);  

e) growing curve, first convex, then concave, with inflexion between x = 85 a x = 98 
(in this paper);  

f) constant (round qx = 0.35 till  0.4, what corresponds to the force of mortality near 
to 0.5);  

g) concave curve with local maximum behind x = 95; 

h) S-curve (first concave, then convex) with possible local maximum round x = 95 
and local minimum round x = 101.  

Of course, some of these models might be difficult to interpret. Below, a series of 
models suitable for fitting the force of mortality µx = µ(x) is given (for curves of type a, b, 
d, e).   

1. Gompertz (1825)   

  µx  =  B C x       ⇔    ln µx  = ln B + x ln C  =  b + c x  

2. Makeham (1860)  

  µx  =  A + B C x      ⇔    ln (µx - A) = ln B + x ln C  =  b + c x  

3. Weibull (1951)  

  µx  =  B x C       ⇔    ln µx  = ln B + C ln x   



4. Kannisto (a specific logistic model 1992, similarly other authors, see Thather et al. 
1998)  

  µx  =  A + 
x

x
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BC
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   ⇔    logit (µx - A) = ln B + x ln C  =  b + c x  

5. Koschin (1999), γ > 0, x > x0  

  µx  =  A + B exp{c (x0 + γ
1  ln[γ(x-x0)+1])}    

⇔   ln (µx - A) = ln B + (x0 + 1γ  ln [γ(x-x0)+1] ) ln C 

6. Coale & Kisker (1990) (quadratic model, d < 0),   

µx  =  
2xx DCB ⇔    ln µx  = ln B + x ln C + x

2 ln D  =  b + c x + d x2 

7. cubic model (e < 0),   

  µx  =  
32 xxx EDCB  

 ⇔    ln µx  = ln B + x ln C + x
2 ln D + x3 ln E =  b + c x + d x2 + e x3 

The type e) can be represented by model 4 or 7. As can be seen, the cubic model 7 is 
a natural extension of the generally used Gompertz type models. The transformed model 
(by logarithm or logit) enables to estimate the parameters by linear regression (model 1, 
3, 6, 7). In particular, using the usual approximation µ x+1/2 ≅  m x , from the cubic model 
(model 7)  

ln µx  = ln B + x ln C + x
2 ln D + x3 ln E =  b + c x + d x2 + e x3  

we obtain the formula (4) for calculating probabilities of dying   qx as follows:  

ln µx+1/2  ≅  ln mx  = β + γ x + δ x2 + ε x3 

qx   =  1 – exp (– mx  ) 

qx  =  1 – exp (– exp ( β + γ x + δ x2 + ε x3 ) )   

Coefficients β, γ, δ, ε  are estimated by ordinary least square method from the model  

ln Mx   =  β + γ x + δ x2 + ε x3   + ε x 

for a proper age interval (values of x).  

Sensibility of the right end of the curve to random errors and inaccuracies is a 
common disadvantage of all models mentioned above. This can be significantly reduced 
when some proper condition on the right end is added. Below, an artificial value M100 
fulfils this role. The unreliable observations Mx   (e.g. for x0 ≥ 95) are substituted in 
regression model by one artificial observation M100 = 0.5.  

The remarks in Section 2 concerning Slovak data imply that the observed numbers of 
living persons older than 100 years correspond to values of the probability of dying 
approximately q100 = 0.4 (or, almost equivalently, µ100 = 0.5). This value may be common 
for other modern populations, too. Similar results have been achieved by searching the 
Czech data in several subsequent years (Koschin 1999). Kannisto with his research group 
collected and analysed in details the data from 13 developed European countries 



(Kannisto 1998, Thather et al. 1998), their results confirm the above conclusions. For this 
reasons, q100 = 0.4 (or, alternatively, µ100 = 0.5) can be taken as a common condition in 
regression models, either absolutely (this point lies on the fitting curve) or as artificial 
input value Q100 = 0.4 or M100 = 0.5, respectively, having the same weight as other input 
data. This condition seems to be more realistic as the usual condition Lω = 0 (in fact, as 
follows from Meszáros 2000, ŠÚ SR takes L101 = 0). Thanks to it the described procedure 
is relatively universal, proper also for other contemporary populations, particularly for 
the small ones.  

 

4. EXAMPLE - RESULTS FOR THE SLOVAK REPUBLIC DATA 

We shall illustrate the described procedure on the Slovak Republic data for the 2001 
(ŠÚ SR 2002). For the reasons discussed in Section 2, the data are taken for the year 
when the Census was performed, to ensure the greatest reliability. The calculation goes 
out of the empirical specific mortality rates Mx , x = 70, 71, ... 94 and the additional 
condition M100 = 0.5. This range of the input data was chosen in order to ensure the fluent 
switch between the main and the end parts of table, to catch the deceleration of the 
growth of mortality rates for very high ages, to minimize the distortion caused by 
unreliable data for high ages, and to enable the reasonable extrapolation for x > 100.  

Using the cubic model (eq. (7)), the following relations were identified by OLS 
method: 

Males:   ln mx  =  22.8142 − 1.0578 x + 0.0137 x2 − 5.44 ⋅10−6 x3  

Females:  ln mx  =  − 0.5862 − 0.3447 x + 0.006258 x2 − 2.82 ⋅10−6 x3 .  
 

 Fig. 2. Probability of dying in age x, females SR, 2001  

The resulting graduated probabilities qx  (Tab. 1, Fig. 2) have been calculated then 
according the formula  qx = 1 − exp (−mx). Fig. 2 displays the original empirical 
probabilities and related 95 % confidence intervals, as well as the Makeham-Gompetrz 
extrapolations obtained by classical King-Hardy method (ŠÚ SR) and the values 
graduated by the described conditioned cubic model for females. (For males SR the 
differences between models are smaller.) The both functions qx  (for males and females) 
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are growing in x on reasonable age interval and reach the inflexion point and maximum 
as follows:  

Males: inflexion point: x = 94.76 maximum:    q(106.83) = 0.4368 

Females:  inflexion point:  x = 96.84 maximum:     q(164.43) = 0.4248.  

The calculated probabilities for females have a more flat maximum, hence they are 
closer to the theoretical assumptions of the model than those for males. 

The main parts of the tables were graduated by moving average method (two times 
centred polynomial moving average of third order and length 7).  

As the last step, both the parts had to be joined. For ages x = 70, ... 94 years (the 
highest value of x, for which the moving averages could be calculated) the differences 
between qx resulting from both methods were calculated. These differences oscillate 
round zero after some x0, and the amplitudes tend to increase. Therefore, as the x0 such a 
value x before oscillations was chosen that the absolute value of difference was minimal. 
Thus, the moving average was used last time for age x0 = 78 years for males and x0 = 77 
years for females.  

 

Table 1. Deaths (Dx), lives – midyear population (Px), empirical (ungraduated) estimation, graduation 
due the Gompertz – Makeham modified exponential model (King-Hardy) and graduation by conditioned 

cubic model, for age 70-94 years.  
  

Males, SR 2001 
 

Females, SR 2001 

age  
x 

Dx Px empirical King-
Hardy 

cubic 
model 

Dx Px empirical. King-
Hardy 

cubic 
model 

80 732 6793 0.102155 0.105059 0.105523 1014 13279 0.073518 0.074414 0.074394 

81 742 5552 0.125100 0.113349 0.115565 1036 10951 0.090266 0.083650 0.083005 

82 442 3613 0.115149 0.122278 0.126497 674 7134 0.090151 0.094017 0.092456 

83 303 2036 0.138277 0.131889 0.135621 439 4116 0.101166 0.105637 0.102787 

84 319 1868 0.156985 0.142222 0.145851 448 3893 0.108704 0.118642 0.114033 

85 299 1955 0.141820 0.153322 0.158194 507 4187 0.114045 0.133168 0.126219 

86 445 2331 0.173789 0.165231 0.169631 779 5130 0.140884 0.149360 0.139358 

87 494 2295 0.193661 0.177994 0.182648 890 4987 0.163446 0.167365 0.153452 

88 360 1822 0.179290 0.191655 0.195969 774 4103 0.171917 0.187334 0.168486 

89 354 1386 0.225402 0.206255 0.210589 653 3285 0.180272 0.209411 0.184427 

90 239 1017 0.209433 0.221836 0.226243 552 2558 0.194098 0.233734 0.201227 

91 223 794 0.244863 0.238436 0.242446 541 2039 0.233044 0.260427 0.218815 

92 186 577 0.275560 0.256089 0.259080 421 1470 0.249034 0.289589 0.237101 

93 106 381 0.242866 0.274826 0.276007 314 1021 0.264748 0.321287 0.255974 

94 95 263 0.303172 0.294669 0.293068 210 725 0.251478 0.355542 0.275306 

95 60 180 0.283469 0.315636 0.310087 180 519 0.293068 0.392320 0.294948 

96 30 134 0.200589 0.337733 0.326871 125 385 0.277238 0.431513 0.314738 

97 25 94 0.233528 0.360959 0.343219 74 249 0.257096 0.472930 0.334499 

98 18 81 0.199263 0.385296 0.358916 49 162 0.261009 0.516281 0.354048 

99 14 99 0.131870 0.410716 0.373749 39 190 0.185567 0.561165 0.373194 

100+ 9 85 0.100470 0.437172 0.387499 45 164 0.239965 0.607070 0.391743 

 



 

5. LAST ROW OF THE TABLE  

When substitute the obtained probabilities of dying into the life table, the rest of the 
table can be completed (see e.g. ŠÚ SR 2002). For comparison, doing this, we get the life 
expectancy e0 greater in  0.14  year for females, but for males less in 0.04, than when 
using the classical Gompertz-Makeham model (King-Hardy method). The life expectancy 
in age x = 80 is then in 0.32 year greater, but for males in 0.09 lower. The life expectancy 
in age x = 90 is for females even in 0.58 year greater, but for males in 0.01 less lower. 
Then the last row (x = 100+) of the life tables calculated by the ŠÚ SR methodology 
would be as it is shown in Tab. 2.   

  

Table 2. Last rows in life tables with probabilities of dying graduated by conditional cubic model and 
closed according to the methodology of  ŠÚ SR, SR 2001.  

x qx px lx dx Lx Tx ex 

Males:         

    100+ 0.387499 0.612501 134 134 108 108.4 0.81 

Females:        

    100+ 0.391743 0.608257 455 455 366 366.1 0.80 

 

In fact, methodology of the Statistical Office of Slovak Republic (ŠÚ SR) supposes 
that ω = 101 is a limit age, e.i. nobody older survives it (l(x) = 0 for  x > ω). The former 
Czechoslovak Federal Statistical Office (FSU, see Pecka 1989) calculated the life tables 
in the same way with ω = 103. This approach may be written in the form     

X qx px lx dx Lx Tx ex 

ω-1 qω-1 1- qω-1 lω-1 lω-1 qω-1 lω-1 (1-qω-1/2) lω-1 (1-qω-1/2) 1-qω-1/2 

ω 1 0 lω-1- dω-1 lω-1- dω-1 0 0 0 

or, using the cumulative form,   

(ω-1)+ qω-1 1- qω-1 lω-1 lω-1 lω-1 (1-qω-1/2) lω-1 (1-qω-1/2) 1-qω-1/2 

The recent alternative approach used by some authors (see e.g. in Cipra 1990) 
understands ω  as the begin of the last, unlimited age interval 〈ω ; ∞). We shall show, 
how then the last row looks out when in addition to it the constant force of mortality µ  
on this interval is supposed. Supposing this, the number of living lx decreases 
exponentially, therefore the number of person-years Lx   lived in this interval is equal 

Lx  = ∫
+1x

x

t dtl  = ∫ −

1

0

dtel t
x

µ  =  lx  (e
0 - e-µ )/µ  =  (1- e-µ ) lx /µ 

and similarly  

∞Tx = ∞Lx = lx / µ . 



This means among others, that, in the relation  Lx = lx+1 + ax dx , the average number 
of years lived in the interval 〈x; x+1) by persons who died in this interval is  

ax = 
µ

1  − 
1

1

−
µe

 . 

Under this conditions the ex = 1/µ  remains constant (e.g. the person aged x will 
survive in average still 1/µ  years, independently of his/her age). Then the row ω  of the 
table looks out as follows (here  lω is obtained  from the previous row)  

 
X qx px lx dx Lx Tx ex 

ω 1-e-µ e-µ lω (1-e-µ ) lω (1- e
-µ ) lx /µ lx /µ 1 /µ 

or, when considered as a cumulative row (in this case dx, Lx, Tx  are related to the whole 
interval 〈ω; ∞) ): 

x qx px lx dx Lx Tx ex 

ω+ 1-e-µ e-µ lω lω lx /µ lx /µ 1 /µ 

For the population of Slovak Republic, the additional assumption µx = µ = 0,5 for x > 
ω = 101 gives  ax = 0,4585. Then, when l101  is calculated in the usual way, the last 
(cumulative) row has a form shown in Tab. 3.  

 

Table 3. Last rows in life tables with probabilities of dying graduated by conditional cubic model and 
closed by unlimited interval 〈ω; ∞) with constant force of mortality   µ = 0.5 on this interval.  

x qx px lx dx Lx Tx ex 

Males:        

      101+ 0.393469 0.606531 82 82 165 165 2.00 

Females:        

      101+ 0.393469 0.606531 277 277 554 554 2.00 

It is interesting, that the same fixed value e100 = 2.0 is stated in the abbreviated life 
tables published by ŠÚ SR until 1998 (and the FSU until 1992), and calculated by former 
methodology. However, the reasons for it were others.  

Finally, let us note, that the life table shows the age structure of the stationary 
population. Thus, while according to the life table using Gompertz-Makeham model (ŠÚ 
SR), the females aged 80 and more years will create 4.5 % of stationary population, 
according the method presented here it will be even 5.8 % (for males the difference is 
less).  

 

6. CONCLUSION 

Conditioned cubic model presented in this paper (the cubic model for logarithm of 
the force of mortality, with an additional condition on M100) enables simple and realistic 



estimation of probabilities of dying in high ages. The suggested method seems to be 
relatively universal and suitable for small populations, as well.  

The crucial point of the method is the way of closing the table. There are good 
reasons for the simplifying assumption about the constant force of mortality in the age 
over 100 years, because it assures a more realistic close of the table than the often used, 
but also artificial assumption L101 = 0. The choice µ = 0.5 for  x > 100 considered above 
could be more questionable. As confirm the observations of Kannisto (1998), calculations 
of mortality for very old ages (x > 100) would require more precise model.  
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