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Abstract

Planners in public and private institutions would like coherent forecasts of the com-
ponents of age-specific mortality, such as causes of death. This has been difficult to
achieve because the relative values of the forecast components often fail to behave in
a way that is coherent with historical experience. In addition, when the group fore-
casts are combined the result is often incompatible with an all-groups forecast. It has
been shown that cause-specific mortality forecasts are pessimistic when compared with
all-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approach
of using log mortality rates and forecasts the density of deaths in the life table. Since
these values obey a unit sum constraint for both conventional single-decrement life ta-
bles (only one absorbing state) and multiple-decrement tables (more than one absorbing
state), they are intrinsically relative rather than absolute values across decrements as
well as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison
(1986), death densities are transformed into the real space so that the full range of mul-
tivariate statistics can be applied, then back-transformed to positive values so that the
unit sum constraint is honoured. The structure of the best-known, single-decrement
mortality-rate forecasting model, devised by Lee and Carter (1992), is expressed in
compositional form and the results from the two models are compared. The composi-
tional model is extended to a multiple-decrement form and used to forecast mortality
by cause of death for Japan.

Key words: Compositional Data Analysis; mortality; cause of death; forecast; Japan;
Lee-Carter; life tables; single-decrement; multiple-decrement.

1



1 Introduction

Disaggregated mortality forecasts offer two main advantages. Public and private financial institu-
tions are exposed to longevity risk - the commitment to make future undefined payments in the
form of pensions, annuities, and health expenditures for care and medical costs. The financial risks
are known to vary by age, sex, time to death, cause of death, and other factors. The monetary
sums involved are enormous and temporal shifts in these factors imply large changes for future
costs. For example, it has been estimated that the health expenditure in the last year of life for
a female who dies from cancer in the Netherlands is twice that of a female who dies from a heart
attack (Polder et al., 2006).

The second reason for disaggregating mortality forecasts is that social planners have a duty to
intervene so that morbidity and mortality are reduced, subject to budget constraints. Spending
on research, capital investment, preventive measures, or palliative care could all be more efficient
if accurate forecasts for sub-groups were available. While effective intervention would gradually
invalidate a forecast, the statistical tools developed for disaggregated forecasting should also allow
more rapid detection of changes in trends.

Thus there is both an attractive logic to, and a strong demand for, mortality forecasting of sub-
groups within populations. At the same time, it is desirable that the disaggregated forecast should
be coherent with an overall forecast. This has been difficult to achieve in practice, so that disag-
gregated forecasts are not currently recommended by demographers as a general approach. For
example, separate sex, or spatial, forecasts using the Lee-Carter model (Lee and Carter, 1992) have
been forced to address these coherence problems (Lee and Nault, 1993; Li and Lee, 2005). The
components frequently diverge in the long run in ways that are implausible when compared with
the historical record. Similar problems apply in the case of multiple-decrement forecasts where
there are several absorbing states, for example in cause of death forecasting. Wilmoth (1995) quan-
tified the way in which forecasts based on proportional changes in mortality rates disaggregated by
cause of death tend to be more pessimistic than single decrement forecasts. Over time, the causes
with the lower rates of decline come to dominate the projection. It is clear that the dependencies,
or relative balances, between the decrements have not been adequately modeled.

Multiple-decrement models maintain intra-age mathematical coherence for the following mortality
measures: (Preston et al., 2001, p. 72)∑

i

nd
i
x = ndx;

∑
i

nm
i
x = nmx;

∑
i

nq
i
x = nqx; (1)

where nd
i
x is the density of deaths from cause i in the life table in the age interval x to x+n, nm

i
x

is the central death rate (deaths divided by person-years of exposure), and nqx is the proportion
who die before age x+ n, conditional on survival to age x.

Causes of death are assumed to be independent when conditioned by age. This means that it
is possible to make independent forecasts of the cause-specific components nm

i
x or nq

i
x and their

combination should produce a plausible life table, although practical experience suggests that it
does not. Independent cause-specific forecasts for nd

i
x cannot be used because they have to obey

the additional constraint that ∑
i

∑
x

nd
i
x = 1 (2)

This constraint imposes an inter-age coherence on the distribution of lifetimes. Thus they are
intrinsically relative rather than absolute values across decrements as well as ages. Changes in
the density by age and cause have to be compensated by changes in other ages or causes. Rather
than seeing this as a disadvantage, this paper argues that this is precisely what we would like to
achieve in a multiple-decrement model, since disaggregated models usually fail because they do not
maintain appropriately changing relative values across decrements. It is hoped that this feature
can be exploited to obtain coherent forecasts. Modeling changes in the distribution of lifetimes dx

2



was explored by Vaupel and Yashin (1986, 1987). It treats mortality improvement as saving lives
and thus focuses on perturbation of the lifetime distribution.

Choosing to model di
x,t is an unusual step, although there has been some recent interest in the

analysis of this life table function in a non-forecasting context (Edwards and Tuljapurkar, 2005;
Canudas-Romo, 2006). The established practice in mortality forecasting is to model the log trans-
form of the central mortality rates mx,t. This has two advantages. It exploits the approximately
log-linear decline in mortality by age with respect to time. Secondly, it transforms the rates into
the real space so that multivariate statistical methods for unbounded variables can be employed
in the knowledge that the inverse transform ensures that all estimated rates exist in the positive
real space.

The decision to model di
x,t subject to the constraint in (2) requires a statistical methodology that is

unfamiliar to demographers. The field is known as Compositional Data Analysis and was pioneered
by Aitchison (1986).

The structure of the paper takes the following form: an introduction to Compositional Data
Analysis (CoDa); construction of the CoDa equivalent of the Lee-Carter model; exploring the
CoDa model in the single-decrement case; extension to the multiple-decrement form; comparing
the single and multiple decrement models; and discussion.

2 Compositional Data Analysis

A composition is defined as a strictly positive vector of length D with a fixed sum. Compositional
data arise when one has many observed compositions, all having the same sum. Such data are
often expressed as percentages or densities. The example we consider in this paper is the dx

function of the life-table, which always sums to the life-table radix1. Another composition familiar
to demographers is the components of the dependency ratio.

Aitchison (1986) argued that compositions provide only relative information, and that the appro-
priate space for analysis of sum-constrained data is the bounded space of the simplex, not the real
space. For obvious reasons it is easier to understand compositional analysis when the simplex can
be represented in two dimensions. Figure 1 shows a ternary plot that represents the simplex for the
dx function of Swedish females downloaded from the Human Mortality Database (2008) (HMD),
divided into three large age groups: 0 − 14, 15 − 64, 65 − 110. Where the dotted line meets the
vertex represents unity for a proportion. Where it meets the base-line represents zero.

The dotted lines intersect at the uniform composition (0.33, 0.33, 0.33) and we can see that the
three components were effectively equal in the second half of the 18th century. By the modern
era, deaths at older ages dominate, middle aged deaths comprise about 8% and the share of young
deaths has collapsed.

Aitchison defined a remarkable set of operators that perform compositional addition, subtraction,
multiplication and centreing on the simplex.2 These operators obey the usual algebraic rules for

1For demographic modeling, it can be noted that Lx/e0, and some measures of fertility and parity such as
fx/TFR, are also compositions. Compositional Data Analysis could give natural models for deriving age-specific
tables from forecasts of the denominators.

2The R software for compositional analysis used in this paper was based on the library R:compositions written
by K. G. van den Boogaart and available at ttp://www.stat.boogaart.de/compositions/
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Figure 1: Sweden, female, 1751-(10)-2001: proportionate life-table deaths by age-groups
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these processes. Compositional perturbations for addition and subtraction are defined by

x = z ⊕ ξ̂ =
[
z1ξ̂1, . . . , zD ξ̂D

]
/
[
z1ξ̂1 + . . .+ zD ξ̂D

]
(3)

= C
[
z1ξ̂1, . . . , zD ξ̂D

]
(4)

z = x	 ξ̂ = C

[
x1

ξ̂1
, . . . ,

xD

ξ̂D

]
(5)

where the closure operator C[. . .] ensures a unit sum:

C [xi, . . . , xD] =
(wi, . . . , wD)

(wi + . . .+ wD)
(6)

Figure 2 shows compositional addition. The perturbation p, which is itself a composition shown
by the black dot, is applied to x0, x1, etc.. The share of component y dominates x0, but p is
dominated by x, so successive perturbations drive the composition towards domination by X.

x y

z

01
xpx ⊕=

YX

Z

)3,.1,.6(.=p

)2,.5,.3(.
0

=x

Figure 2: Compositional addition

The effect of the perturbation p can be assessed by its position relative to the uniform composition,
marked by a red dot.

Compositional multiplication is defined by

t⊗ x = C
[
xt

1, . . . , x
t
D

]
(7)
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The effect is shown in Figure 3, where the dots mark the effect of multiplying the composition x0

by successive values of the scalar t. The filled blue dot represents the result when t = 1 and the
red dot is the uniform composition defined when t = 0. Positive values of t drive the composition
towards its dominant component, while negative values drive it towards its minimum component.

6,...,6,0 −=⊗= txtx
n

x0 =(.3, .5, .2)

Figure 3: Compositional multiplication

If we assume a compositional data set with D columns and N rows summing to unity, then centreing
is defined by calculating the geometric mean composition ξ̂ and subtracting it from each row.

ξ̂ = cen(x) = C[exp {E(log x)}] (8)
= C[g1, . . . , gD] (9)

where gi is the geometric mean of the ith column.

The statistical pitfalls of modeling compositional data have been known for more than a century.
They arise because of the dependency between the columns - specifically the covariance matrix of
compositional data always has at least one negative term in each row (Aitchison, 1986). Aitchison’s
innovation was to open the sum-constrained data of the simplex to the full range of linear models
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in the real space by defining the centred log-ratio and its inverse

CLR(z) = log
[
z1
g(z)

, . . . ,
zD

g(z)

]
(10)

CLR−1(z) = C[exp(z1), . . . , exp(zD)] (11)

Any strictly positive denominator is permissible in (10), but it is conventional to use the geometric
mean of the row composition. It is clear from (10) that a model of CLR(z) is a model of relative
values.

To illustrate the effect of centreing compositions and calculating a linear model after transformation
by CLR(), Figure 4 shows the Swedish data, the centred form, and its first principal component.
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Figure 4: Compositional centreing and the first Principal Component: original data (blue), centred data (red)

It can be seen that one principal component is sufficient to capture most of the variation and that
the apparent non-linearity of the data on the simplex is well represented by a straight line in the
real space.

Compositional regression is also possible, but this paper will make use of the singular value de-
composition (SVD) of CLR(z) which allows one to select r singular vectors as the best rank-r
least-squares approximation to CLR(z)(Aitchison, 2003). Using the compositional operators de-
fined above, the full model for the rank-r approximation of a compositional data set is then

x(r)
n = ξ̂ ⊕ (un1s1 ⊗ β1)⊕ . . .⊕ (unrsr ⊗ βr) , r < D (12)

where the u are the left singular vectors, s are the singular values, and the β are the inverse of the
centred log ratio transform of the transposed right singular vectors.
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3 A CoDa Model for Mortality Forecasting

In this section we take as a benchmark the best known mortality forecasting procedure, the Lee-
Carter model (Lee and Carter, 1992), and attempt to define its CoDa equivalent. The mortality
component of the Lee-Carter model is defined by

lnmx,t = ax + bxkt + εx,t (13)

where mx,t is the central death rate at age x and time t, and ax is the average pattern of mortality
by age. To match the life-table in each period t, this average pattern is distorted by an age-period
interaction term bxkt. The temporal intensity of the distortion is controlled by kt and its age-
specific pattern by bx. The ax are calculated as age-specific averages of lnmx,t across time. The
lnmx,t are then centred on ax, and kx and bt are estimated by SVD as the first left and right
singular vectors. To define a unique solution the bx are required to sum to unity and the kt to
zero.

For advanced economies in the 20th century this rank-1 approximation is usually adequate and
the kt are approximately linear which allows them to be forecast with a simple ARIMA time series
model. Lee and Carter used a random walk with drift.

kt = kt−1 + d+ et (14)

They observed that fitting the log mortality rates ensured positivity, but emphasised the weight
given to low rates. As a result they used an iterative procedure to adjust the kt with the objective
of fitting the observed annual totals of deaths Dt. In most recent applications, this has been
replaced with a procedure that fits e(0), life expectancy at birth (Lee and Miller, 2001).

To express the Lee-Carter structure in CoDa form the data structure and model notation follows
the practice of Compositional Data Analysis. A transposed Lexis surface of dx,t values for one
country and sex is organized with t = 1 . . . N time periods as rows and x = 1 . . . D age groups
as columns. Exposure and deaths tables are used. Since the dx,t values used in the final analysis
have to be strictly positive for log transformation, the oldest age column in which every cell has
positive exposure is regarded as ω and older exposure is summed into the open interval starting
at ω. Very light smoothing is applied to each row of the deaths table to ensure that any zero
counts are replaced by a positive value. The smoothing is carried out by a histogram smoother
with a second-order penalized likelihood that leaves the moments and sums unchanged.3 As with
exposure, deaths are then accumulated in the open interval. The dx values are calculated from the
Mx using the usual method employing ax. Since the life-table dx function is a density, each row
of the table to be analyzed sums to the life table radix, assumed here to be unity, and is therefore
a “composition” containing only relative information.

The construction of the CoDa equivalent to the Lee-Carter model can be summarised in the
following steps:

1. Construct an N ×D matrix of the dx,t values where t = 1 . . . N and x = 1 . . . D so that each
row is a density of life-table deaths.

2. Centre the matrix by calculating the vector of age-specific geometric means and subtracting
it from each row of the matrix using the CoDa subtraction operator.

3. Calculate the centred log-ratios of each row of the resulting matrix to transform it into the
real space.

4. Calculate the SVD of the result.

5. Construct the selected low rank approximation to the centred log-ratio matrix.
3I should like to thank Paul Eilers and Giancarlo Camarda for their help with the R code.
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6. Use the inverse of the centred log-ratio transform to convert the low rank approximation to
compositional data.

7. Using the compositional addition operator, add the column-specific geometric means to the
low rank compositional matrix to obtain the fitted d̂x,t matrix.

Since we are modeling the dx,t, or distribution of lifetimes, directly there seems to be no reason to
adjust the left singular vector to match average life-expectancy or deaths in total or by age. We
do not scale the singular vectors as they automatically sum to zero.

4 Single-Decrement Examples

[Note: for this summary, only the first left and right singular vectors are shown since they dominate
the dynamics. Some second and third vectors are significant and can be interpreted as information
about the AIDS epidemic, Gorbachev’s vodka controls, data errors, the collapse of Communism in
Eastern Europe, etc..]

To illustrate the model fit, Figure 5 shows the centred log ratio data and rank-2 model estimates
for three years spanning the experience of French females from 1955 to 2005.
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Figure 5: France, female, 1955-2005: CLR(centred dx) (points) and rank-2 model estimates (lines) for 1955 (black),
1979 (blue), 2005 (red).

Figure 6 shows the Period and Age perturbation profiles for the same data, before the CLR−1

transform is applied to convert them to a composition. The Period factor shows the same linearity
observed in Lee-Carter estimates and has the same interpretation. The Age perturbation has a
different interpretation from that of the Lee-Carter model. When the Period factor is positive, dx

density for ages where the Age Factor is negative is transferred to ages where it is positive. For
French females in the years after 1980, relative to the central life-table, lives are being saved below
age 80 and transferred to higher ages.

France is a high-performance country in survival terms, but the Period Factor trend in Figure 6
is typical of the patterns for either sex in advanced economies in the HMD during the second half
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of the Twentieth Century, but with some exceptions. For example, the Period factors for Japan
are more curvilinear, although the age pattern is similar to France. The Age Factor profiles for
all countries in the HMD are basically similar to the French female pattern with the dominant
positive value at age ω, with the exception of most of the former Communist countries, the USA,
and Canadian males.

To illustrate that these results are not a function of rigidity in the models, Figure 7 and Figure 8
show patterns for males in Hungary.
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Figure 6: France, female, 1955-2005: (A) Period Factor; (B) Age Factor.

A B

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

1960 1970 1980 1990 2000

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

●

●

●

●●

●
●

●

●●
●●●

●●●●

●●
●●

●
●

●
●
●●

●
●
●

●
●
●
●

●●
●

●

●

●●
●
●
●●●●

●●
●●

●●
●
●
●
●
●
●
●
●●

●
●
●●

●●
●
●●●●●●●●●●●●●●

●●
●
●
●

●
●

●

●
●

●

●

●

●

●

●●

●

0 20 40 60 80 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Figure 7: Hungary, male, 1955-2005: (A) Period Factor; (B) Age Factor.
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The Age perturbation in Figure 7 reveals that the dx function is tending towards bimodality in the
short and medium term and thus the model is not limited to unimodal perturbations. It should
also be noted that the temporal trend in Hungary is very simple when compared with the USA (see
Figure 15 later), and the temporal dynamics of the survival probability distribution (lx) in Figure 8
come from the “fixed” life-saving pattern by age, not from non-linear changes in the intensity of
perturbation over time. This is a surprising result and is repeated for males in the Czech Republic,
Slovakia and Slovenia, although the other former Communist states in the HMD show non-linear
changes in the Period factor.

5 Exploring the Single Decrement Model

In this section, single-decrement CoDa models are compared with variants of the Lee-Carter model.
The objective is to determine if the CoDa model is a plausible technique for forecasting mortality.
For this purpose it is convenient to follow the structure and model abbreviations adopted by Booth
et al. (2006). They used the acronym LC to indicate the original Lee-Carter model as the SVD
of the log-mortality rates, with kt adjusted to match the total observed deaths Dt. The adjusted
kt are extrapolated by a random walk with drift, and the forecast “jumps off” the fitted rates in
the final year. The Lee-Miller variant (LM) (Lee and Miller, 2001) adjusts the kt to match the
observed average life expectancy at birth e0,t and the jump-off rates are the observed values in
the final year of the fitting period. In the Booth-Maindonald-Smith variant (BMS) (Booth et al.,
2002), the jump-off is from the fitted rates as in LC, but the adjustment of kt involves fitting the
observed age-specific deaths Dx,t.

For all the models, the fitting period ended in 1985 and the forecast was made for 1986-2000. The
starting years for fitting vary by model. In the spirit of the original publication of the LC model,
long series were used in its estimation. Eight countries start in 1900 but data for Australia and
Canada are only available from 1921. For LM the starting date is 1950. The novel feature of the
BMS model is that starting dates are country-specific and chosen to maximise goodness of fit to a
linear kt. The years for each country are given in Booth et al. (2006, Table 1). The lengths of the
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Figure 8: Hungary, male: survival probability (l̂x) in 2005 (black), 2050 (blue), 2100 (red).
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selected fitting periods vary from 24 years to as low as 10, for a forecast horizon of 15 years.4 An
open interval was defined starting at age 95.5

As with the original article, the data are taken from the HMD, but the data have since been revised.
In the tables that follow, the parameters are estimated from the revised data.6 A comparison with
the published tables shows only very minor differences. It should be noted that the tables presented
here adopt the definition of error as (observed - forecast) which was reversed in the published tables.
The interpretation of the success of the LC model over the longer time-period is complicated by the
inclusion of periods of age-specific mortality that were unlikely to be relevant to the forecast period.
The involvement of the countries in the two World Wars varied, which also has a sex-specific effect,
and the data for all but Australia and Canada include the 1918 influenza pandemic.

In the tables that follow, each Lee-Carter variant (LC, LM and BMS) is followed by the CoDa
results estimated from the same data. There are two additional columns “:unadj” and “:actual”.
The first shows the effect on the LC model of not adjusting the kt to match Dt. The second uses
the actual final life-table as the jump-off point for the forecast rather than the fitted values.

Table 1: Mean error in male log death rates by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 0.24 -0.16 -0.06 -0.10 -0.10 -0.09 -0.04 -0.01
Canada 0.13 -0.09 -0.02 -0.04 -0.04 -0.04 0.06 0.07
Denmark -0.04 -0.03 -0.06 -0.03 -0.12 -0.13 -0.11 -0.12
Eng & Wales 0.28 -0.06 0.02 0.00 -0.04 -0.03 -0.03 -0.01
Finland 0.24 -0.09 -0.02 -0.03 -0.01 0.00 0.04 0.04
France 0.19 -0.11 -0.03 -0.03 -0.08 -0.07 -0.07 -0.04
Italy 0.06 -0.02 0.00 0.01 0.00 -0.01 0.03 0.03
Norway -0.17 -0.05 -0.07 -0.06 -0.10 -0.12 -0.11 -0.09
Sweden 0.09 -0.03 -0.02 -0.02 -0.06 -0.08 0.01 0.05
Switzerland 0.12 -0.01 0.01 0.05 -0.02 -0.01 -0.02 0.01

Average 0.11 -0.06 -0.02 -0.03 -0.06 -0.06 -0.02 -0.01

Table 2: Mean error in female log death rates by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa

Australia 0.16 -0.09 -0.02 -0.02 -0.05 -0.02 -0.01 0.05
Canada 0.24 0.02 0.08 0.09 0.03 0.09 0.07 0.07
Denmark 0.35 -0.03 0.03 0.04 -0.05 -0.01 -0.04 -0.05
Eng & Wales 0.20 0.00 0.04 0.06 0.00 0.03 -0.02 0.03
Finland 0.68 0.04 0.17 0.15 0.16 0.22 0.17 0.23
France 0.26 -0.07 0.01 0.05 -0.02 0.02 -0.03 0.02
Italy 0.24 0.00 0.05 0.10 0.06 0.09 0.07 0.10
Norway 0.56 -0.05 0.06 0.02 -0.01 -0.01 0.03 -0.03
Sweden 0.61 -0.05 0.07 0.05 0.00 0.06 0.04 0.01
Switzerland 0.43 -0.04 0.07 0.12 0.02 0.07 0.02 0.06

Average 0.37 -0.03 0.06 0.06 0.01 0.05 0.03 0.05

For the long time-series in the LC data-set, the CoDa results are remarkably similar to “LC:actual”,
the variant with the actual jump-off life-table. For the shorter periods, there is no clear winner but

4We presume that the search took place over the interval 1950 to 1985.
5It is not clear how cells with zero mortality rates at young ages were handled in the error analysis. In this study,

zero death totals were replaced by 0.5 to create a rate more extreme than the data.
6The Lee-Carter variants were estimated using the package R:demography by Hyndman, R. J. and his colleagues,

2006.

12



Table 3: Mean absolute error in male log death rates by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 0.46 0.28 0.19 0.20 0.18 0.17 0.13 0.13
Canada 0.30 0.19 0.12 0.12 0.11 0.11 0.12 0.12
Denmark 0.19 0.19 0.18 0.18 0.21 0.21 0.18 0.21
Eng & Wales 0.44 0.28 0.19 0.18 0.14 0.14 0.12 0.12
Finland 0.44 0.29 0.24 0.23 0.20 0.20 0.19 0.21
France 0.35 0.30 0.14 0.14 0.13 0.12 0.12 0.11
Italy 0.25 0.23 0.18 0.18 0.17 0.17 0.18 0.16
Norway 0.23 0.22 0.19 0.18 0.20 0.20 0.18 0.18
Sweden 0.24 0.19 0.18 0.18 0.20 0.20 0.16 0.19
Switzerland 0.25 0.23 0.18 0.18 0.18 0.18 0.16 0.17

Average 0.31 0.24 0.18 0.18 0.17 0.17 0.15 0.16

Table 4: Mean absolute error in female log death rates by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 0.30 0.24 0.17 0.16 0.15 0.14 0.12 0.15
Canada 0.26 0.16 0.12 0.13 0.10 0.13 0.12 0.13
Denmark 0.42 0.21 0.22 0.22 0.24 0.24 0.21 0.24
Eng & Wales 0.26 0.14 0.13 0.13 0.12 0.12 0.10 0.12
Finland 0.76 0.33 0.31 0.29 0.27 0.30 0.26 0.32
France 0.36 0.22 0.12 0.14 0.11 0.11 0.10 0.11
Italy 0.34 0.23 0.17 0.18 0.15 0.16 0.15 0.15
Norway 0.64 0.26 0.23 0.22 0.20 0.20 0.18 0.20
Sweden 0.67 0.25 0.20 0.20 0.18 0.20 0.18 0.19
Switzerland 0.50 0.29 0.22 0.24 0.20 0.22 0.18 0.22

Average 0.45 0.23 0.19 0.19 0.17 0.18 0.16 0.18

the CoDa models can be regarded as viable alternatives. This applies equally to the error measures
using log mortality-rates, which are not subject to minimisation in the CoDa SVD. There seems
to be no penalty for the lack of an adjustment procedure in the CoDa models.

Although these errors measured over a short forecasting horizon are reassuring for the CoDa models,
fundamental differences do arise in longer-term forecasts. Figure 9 shows the Lee-Miller and CoDa
forecasts for female life-expectancy in England and Wales.7 The extrapolated “Best Practice” line
estimated by Oeppen and Vaupel (2002) is provided as a benchmark. A similar pattern can be
seen for France in Figure 10.

The pattern of “optimism” shown in the CoDa forecasts seems to be a general feature for countries
with advanced economies and high life-expectancy. Across the female data for the ten countries
in the tables, only Norway has approximately the same forecast life-expectancy from both models.
The differences between the Lee-Miller and CoDa forecasts are less pronounced for former com-
munist countries. This implicates high levels of survival and rapid improvement, but Lee (2000)
pointed out that the bx.(kt − kt−1) term in his model is constant if kt is linear. This leads to a
fixed rate of decline in log mortality i.e. each age-specific mortality rate changes at a constant
exponential rate (Wilmoth, 1993). If one examines the log mortality rates derived from CoDa
models, their first-differences are linear but not necessarily constant.8 As a result, CoDa forecasts
of life expectancy are generally linear for most advanced economies and do not show the asymptotic

7In this figure and the following one, the terminal year for fitting was the maximum available in the HMD, and
the open interval started at the maximum age for which all death counts were strictly positive.

8This result was derived by inspection and not analytically.
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Figure 9: England and Wales, female: life expectancy at birth (circles), CoDa fitted and forecast (blue), Lee-Miller
forecast (magenta), Best Practice (red).
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Figure 10: France, female: life expectancy at birth (circles), CoDa fitted and forecast (blue), Lee-Miller forecast
(magenta), Best Practice (red).

15



Table 5: Mean error in male life expectancy by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 1.07 3.41 1.62 1.85 1.55 1.41 0.63 0.31
Canada 0.75 2.08 0.87 0.95 0.73 0.70 -0.17 -0.25
Denmark 0.53 0.45 0.51 0.29 1.10 1.09 1.18 1.12
Eng & Wales 0.57 2.42 1.02 1.12 1.07 0.99 0.84 0.64
Finland 0.66 2.44 1.01 1.04 0.60 0.43 0.11 -0.02
France 0.56 2.82 0.96 0.94 1.01 0.90 0.85 0.58
Italy 1.33 1.86 1.15 0.97 1.12 1.13 0.79 0.64
Norway 1.59 0.81 1.08 0.99 1.50 1.55 1.12 1.06
Sweden 0.63 1.26 1.04 1.01 1.24 1.30 0.59 0.37
Switzerland -0.05 1.02 0.31 0.01 0.39 0.27 0.28 0.00

Average 0.77 1.86 0.96 0.92 1.03 0.98 0.62 0.44

Table 6: Mean error in female life expectancy by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 0.79 2.28 1.00 1.01 0.86 0.61 0.21 -0.16
Canada -0.43 0.93 -0.24 -0.32 -0.42 -0.85 -0.40 -0.30
Denmark -1.45 0.75 -0.50 -0.60 -0.48 -0.89 -0.40 -0.26
Eng & Wales -0.03 1.17 0.43 0.31 0.44 0.10 0.43 0.13
Finland -0.52 2.03 0.11 0.12 -0.47 -0.93 -0.81 -1.21
France 0.36 2.47 0.70 0.46 0.41 0.12 0.23 -0.05
Italy 0.65 2.05 0.80 0.48 0.50 0.21 0.24 0.02
Norway -0.73 1.69 0.04 0.18 -0.02 -0.08 -0.34 -0.06
Sweden -0.65 2.04 0.19 0.27 -0.10 -0.51 -0.13 0.06
Switzerland -0.76 1.99 -0.11 -0.43 -0.28 -0.67 -0.51 -0.84

Average -0.28 1.74 0.24 0.15 0.04 -0.29 -0.15 -0.27

behaviour of the Lee-Carter variants.

6 Exploring the Multiple-Decrement Model

The intention of specifying a CoDa model was to allow a very simple extension to the multiple-
decrement case. If we have K causes of death, then the N×D×K array of di

x,t values is “unfolded”
to an N ×DK matrix. The rows are still compositions and sum to unity and the SVD proceeds as
before, after centring on the D×K vector of the geometric means of the columns. The left singular
vectors control the temporal dynamics and their interpretation is unchanged. The elements of the
right singular vectors are now defined by pairs of ages and causes. As in the single-decrement
case they indicate which columns are losing and gaining deaths, but the gains and losses need not
be balanced within causes or within ages. In the 20th century, we would imagine that infectious
causes would lose deaths at most ages, whereas cancer might gain deaths at most adult ages.

The death counts for Japan were downloaded from the Berkeley Mortality Database (2008) (BMD)
and cover the years 1951 . . . (1) . . . 1990 and ages 0, 1 − 4, 5 − 9, . . . , 95 − 99, 100+. Totals for
unknown ages at death were distributed proportionately. Causes of death are disaggregated into
40 categories, but it was felt that this was too many for initial exploration. A rather arbitrary
categorisation of the 40 into 6 groups was used: Infectious (2:5, 8:9), Malignant Neoplasm (11:21),
Heart Disease (23:25), Cerebrovascular (27:29), Respiratory (6:7, 30:31), and Miscellaneous (1, 10,
22, 32:40). The HMD dx,t data for Japan were aggregated to match the BMD age groups and
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Table 7: Mean absolute error in male life expectancy by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 1.18 3.41 1.62 1.85 1.55 1.41 0.63 0.32
Canada 0.79 2.08 0.87 0.95 0.73 0.70 0.19 0.25
Denmark 0.53 0.45 0.51 0.32 1.10 1.09 1.18 1.12
Eng & Wales 0.70 2.42 1.02 1.12 1.07 0.99 0.84 0.64
Finland 0.84 2.44 1.01 1.04 0.62 0.47 0.27 0.20
France 0.63 2.82 0.96 0.94 1.01 0.90 0.85 0.58
Italy 1.33 1.86 1.15 0.97 1.12 1.13 0.79 0.64
Norway 1.59 0.96 1.12 1.04 1.51 1.56 1.15 1.10
Sweden 0.79 1.26 1.04 1.01 1.24 1.30 0.61 0.40
Switzerland 0.49 1.02 0.44 0.31 0.49 0.40 0.40 0.29

Average 0.89 1.87 0.97 0.96 1.04 1.00 0.69 0.55

Table 8: Mean absolute error in female life expectancy by model.

Country LC :unadj. :actual CoDa LM CoDa BMS CoDa
Australia 0.79 2.28 1.00 1.01 0.86 0.61 0.23 0.29
Canada 0.43 0.93 0.25 0.32 0.42 0.85 0.40 0.31
Denmark 1.45 0.75 0.50 0.60 0.49 0.89 0.40 0.27
Eng & Wales 0.19 1.17 0.43 0.31 0.44 0.13 0.43 0.14
Finland 0.55 2.03 0.30 0.29 0.48 0.93 0.82 1.21
France 0.41 2.47 0.70 0.46 0.41 0.20 0.23 0.24
Italy 0.66 2.05 0.80 0.48 0.50 0.21 0.24 0.10
Norway 0.73 1.69 0.25 0.32 0.21 0.18 0.34 0.18
Sweden 0.65 2.04 0.24 0.29 0.16 0.52 0.17 0.14
Switzerland 0.76 1.99 0.14 0.44 0.30 0.68 0.51 0.84

Average 0.66 1.74 0.46 0.45 0.43 0.52 0.38 0.37

the three-dimensional array was constructed by using Equation 10.31 from Elandt-Johnson and
Johnson (1980).

nd
i
x,t = ndx,t

nD
i
x,t

nDx,t
(15)

Conditioning on a fixed age x removes the usual non-stationarity problems that would be caused
by using Dx,t.

To illustrate the fit of the model it is convenient to calculate lix∗ , the number of persons aged x∗

who will eventually leave the table from cause i: details are given on p. 76 of Preston et al. (2001).

lix∗ =
∞∑

x=x∗
nd

i
x (16)

Figure 11 shows the period life-table probability at birth that a Japanese female will die of a
specific cause. The open circles mark the data used to fit the model and the lines show that a
rank-2 approximation is very good. The solid points from 1999 to 2005 are outside the fitting
period and represent the three leading causes of death in Japan. They are taken from calculations
by the Japanese Ministry of Health, Labour and Welfare.9 The fit between the forecast and
the post 1999 data for malignant neoplasms and cerebrovascular disease is reasonable, but the
forecast probability for heart disease is so much higher that one might hope that the definitions
are different. Unfortunately, the source does not specify the causes under each broader heading.

9http://www.mhlw.go.jp/english/database/db-hw/index.html
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The cerebrovascular category has two dominant groups with very different dynamics, so combining
them probably represents a sub-optimal model.

The life-saving interpretation gives us new insights into the change in mortality by cause. To
illustrate this, Figure 12 shows the components of the first right singular vector that represent
infectious diseases and malignant neoplasms by age. The latter cause gains deaths at all ages when
the left-singular vector is positive, whereas infectious diseases have become less important over
most of the age-range.

7 Comparing the Single and Multiple Decrement Models

In both cases, identification of the ARIMA model suggested that a random walk with drift is
inadequate. Using the AICc criterion (Shumway and Stoffer, 2000), ARIMA(0,2,2) was selected.
The first two singular vectors of the single-decrement model for females in Japan, 1951-1990,
capture 95.3 and 3.6% of the variance in the centred matrix. For the multiple-decrement model
the figures are 91.2 and 4.1%. Although the contribution of the second vector seems to be small,
it is necessary to recreate the curvature in the cerebrovascular group (see Figure 11). Figure 13
shows the first and second left-singular vectors. This indicates that disaggregating by cause does
not introduce extra dynamics to the model. If this indicates that there are effectively just two
fundamental temporal processes driving all causes then it is an important result.

The life expectancy forecasts for both models are shown in Figure 14. It is clear that we cannot
regard the multiple-decrement model as pessimistic with respect to the single-decrement version.
Wilmoth (1995) reported differences of 5 and 10 years by 2020 and 2050, respectively. Preliminary
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Figure 12: Japan, female, 1951-1990, right-singular vector components for: (A) Infectious Diseases; (B) Malignant
Neoplasms.
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Figure 13: Japan, female, 1951-1990: (A) first left-singular vector; (B) second left-singular vector. Symbols: single
decrement (red); multiple decrement (blue).
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Figure 14: Japan, female, 1951-1990: life expectancy at birth (circles), single decrement forecast (magenta),
multiple decrement forecast (blue), “best practice” (red).
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results, not presented here, suggest that this coherence between the two models is also true for
France and the Netherlands.

8 Discussion

8.1 Data quality

Mortality by cause of death is thought to be particularly inaccurate at high ages, partly because
of misdiagnosis and lack of autopsy confirmation, and partly because multiple causes of death are
often ascribed. Secondly, deaths are often tabulated by 5 year age groups and the open age interval
into which the deaths of the oldest-old are aggregated is often defined at a relatively young age such
as 85. Unfortunately, it is at these high ages where most of the temporal dynamics are occurring.
This makes it unlikely that a single-decrement forecast aggregated up from a multiple-decrement
forecast should be considered as being better. It is more realistic to regard the multiple-decrement
forecast as being special-purpose and subject to additional sources of uncertainty, although it
may be revealing as to why higher-rank approximations may be required in the single-decrement
forecast. In the Japanese case, the rank 2 component seems to be driven by non-linear changes in
the components of cerebrovascular mortality.

8.2 Model complexity

The separation of temporal and fixed age-cause-specific effects in the Lee-Carter structure means
that forecasting the multiple-decrement CoDa version is not penalised by having a large number of
causes and ages. However, it is not clear whether one should use all available causes and aggregate
after modeling, or select groups on the basis of disease similarity or common dynamics. One
constraint is imposed by the requirement that compositions should be strictly positive.

8.3 Combining forecasts

The CoDa model presented above aims to make a unified forecast of d̂i
x whose aggregation across

causes can be used as a single-decrement forecast. It is also possible to combine single- and
multiple-decrement models so that the the single-decrement forecast is maintained. Assume that
we have forecasts of nm̂x,t, perhaps from a Lee-Carter model, and nd̂

i
x, from a CoDa model. They

can be combined using (Elandt-Johnson and Johnson, 1980, Eqn. 10.9) as

nm̂
i
x,t = nm̂x,t

nd̂
i
x,t

nd̂x,t

(17)

This guarantees that the multiple-decrement forecast nm̂
i
x,t is consistent with the single-decrement

model nm̂x,t, but does not of course resolve the issue of why the forecast of d̂i
x was not sufficient

on its own.

8.4 Rectangularisation of the survival curve

The CoDa model offers a very simple test of long-run rectangularisation - the growing tendency in
advanced economies for the survival probability to remain close to one and then collapse quickly
to zero at high ages. If rectangularisation exists and mortality becomes compressed as Fries (1980)
suggested, then the first right-singular vector should show a peak at an age “interior” to the age
range. For France in Figure 6, single positive and negative regions are divided at circa age 80 and
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the scale of this process in the positive limb of the Age Factor increases with age, showing that
if the trend in the Period Factor continued indefinitely, all deaths would occur at ω = 106. In
2005 only 0.19% occurred at this age. A random-walk with drift projection of the Period Factor
would lead to 15% dying at the maximum age in 2050, but by 2100 this would have risen to 86%.
Thus there is no evidence from the model and these data for the combination of Period and Age
Factor patterns that might indicate a long-term rectangularisation process below the age-limit of
the life-table.

Some countries do suggest rectangularisation. Figure 15 shows the patterns for females in the USA.
As expected, there is a temporal trend in dx,t perturbation, but the process is non-linear in time
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Figure 15: USA, female, 1955-2004: (A) Period Factor; (B) Age Factor.

and has short periods of stagnation centred on 1960 and 1985. The Age Factor does show evidence
of ultimate rectangularisation, but at a modal age of 103, well above the age of 85 suggested by
Fries (1980). For males in both the USA and in Canada, the limit modal age is 101 years with ω
equal to 109 and 108 respectively. Figure 16 shows the projected dynamics of the USA female dx

function over the next century.

As the USA and Canada are the only advanced economies in the HMD showing rectangularisation,
it is important to recall that the four-fold classification by Kannisto (1994) of the quality of old-age
mortality in 32 sets of life-tables placed these two countries together with Chile and New Zealand
Maori in the lowest category, entitled “Weak Quality”.10 The weight of the HMD evidence is
that rectangularisation is a short-term effect in advanced economies and is not indicative of a
widespread limiting process. More remarkably, an analysis of the Swedish data by 50-year periods
from 1800 shows no evidence of rectangularisation as a limiting process (Oeppen, 2008).

8.5 Changing hazards versus life-saving as models of mortality

The CoDa model shifts deaths from one age to another, rather than altering mortality rates. Thus
it is essentially a life-saving model in the style of Vaupel and Yashin (1986, 1987). The advantages
or disadvantages of life-saving models are unknown in a forecasting context.

10I should like to thank Domantas Jasilionis for bringing this to my attention.
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9 Conclusion

This paper suggests that the problem of coherent forecasting of multiple-decrement life tables
can be approached via Compositional Data Analysis: a methodology explicitly developed for con-
strained data. As a test of the method, the Lee-Carter model was expressed in compositional form
and proved to be as good as the Lee-Carter variants in short-horizon forecasts for ten countries.
For a compositional model, the disaggregation of deaths by age into specific causes presents no
additional structural problems. A brief examination of multiple-decrement fits and forecasts for
Japan suggests that the results look promising, although it is clear that a great deal more testing
would be required before the methodology could be regarded as established. It does not seem to
be the case that the multiple-decrement compositional forecast is always more pessimistic than the
single-decrement one, as has been observed in proportional change models of mortality rates.
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