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Abstract

Similar to the best-practice life expectancy, the bestfira mortality surface over age
and time can be estimated. Reliability is a serious issusglse population size across
countries varies over several orders of magnitude. Outtisalus to estimate a la-
tent mortality distribution, properly accounting for obgsd magnitudes. This brings a
meta-analytic framework to mortality studies, opening ynaew opportunities to study
variability between demographic units in a quantitativeszwa

1 Introduction

Best-practice life expectancy, that is the highest lifeemtpancy achieved in a particular year,
has been rising linearly for almost 150 years, with a slopabafut three months per year
(Oeppen and Vaupel, 2002). The country in which life expsxtdhad been highest varied
over the years. For women Japan has been leading for theviarstytyears, while in the last

five years males in Iceland performed best.
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High life expectancy is linked to low mortality, but this dorot necessarily imply that
the leading country automatically performed optimallylhwiespect to mortality at every
single age. Mortality may well have been lower in some otloeintry at least for some ages.
Corresponding to the notion of best-practice life expexyame can define the best-practise
mortality surface as the mortality surface consisting efltwest values of mortality at every
age over the period of interest. This surface of minimal aldytwould give the benchmark
in any particular year for any age, and it could be used to @mphe performance of
different countries relative to what they could have achieW they had performed optimally.
We may be able to assess the contribution of mortality agifit ages to gaps between actual
performance and the tentative optimum, or we could dematesait what ages the countries
leading in life-expectancy performed this well, and whérer¢ would be room for further
improvement. The best-practice surface also could be aedlyke other mortality surfaces:
trends could be studied and future mortality levels coulgtaelicted.

A naive approach to estimate the best-practise mortalitiase would be to calculate
empirical rates from several low-mortality countries aakktthe observed minimal value of
the death rates as the best-practise value. However, threagh is hampered by the fact
that low-mortality countries vary considerably in sizer Egample, the USA with more than
300 million inhabitants, but also Iceland with a total paiidn number of about 300,000,
are among the low-mortality countries. Consequently, tiodénumber of people at risk and
the number of deaths observed can be quite small, introdwstiong variability as well as
zero observed mortality for certain ages.

We present a meta-analytic framework that models the obdedeaths as outcomes
based on a latent mortality distribution, varying over agd aime. The observed data are
used to estimate this latent distribution. This approadtonty allows to handle the problem
induced by strongly differing country sizes but it also dealmore detailed studies of the

mortality distribution than just its minimal value.



2 Dataand Mode

We assume that information on the number of deaths and théewwhindividuals exposed
to risk is available for/ units, which can be countries, like in the application irsthaper,
or regions within countries or larger geographic entities.

In this application we will use data on deaths and exposuresifigle years of age and
single years from/ = 21 countries derived from the Human Mortality Database (HMD).
We consider ages from 30 to 100 and the period from 1970 to.ZDI0@ countries included
in the study were: Austria, Australia, Belgium, Canada, idark, England and Wales, Fin-
land, France, Iceland, Italy, Japan, Luxembourg, NethddaNew Zealand (Non-Maori
population), Norway, Portugal, Spain, Sweden, SwitzetJamited States, West-Germahy.

Mortality at ageu in yeart is denoted by.(a, t) and we assume thata, t) varies across
units according a distribution with densify ,(m). That is, mortality;(a, t) is itself con-
sidered to be a random variable, having a latent distribytwehich can only be inferred
indirectly. Mortality 1;(a, t) in any of theJ units is a realization from this densify, ;) (m).
To make inference on the distribution ofa, t) an immediate solution would be the follow-
ing: If y;(a,t) is the number of deaths in unitat agea in yeart andn;(a, t) denotes the

corresponding exposures, then we could estimatgthe t) by the empirical rates

fii(a,t) = = (1)

and therefrom derive mean, variance or other sample statistinterest. One drawback of
this strategy is that the accuracy of the empirical ratekéndifferent units is not taken into
account. This is particularly relevant for sample extrenadgere units with small exposures

and/or number of events may lead to high or low mortalityneates due to higher variability

1The HMD currently covers a total number of 32 countries, sofvehich (from Eastern and South Eastern
Europe and Taiwan) were not included here. These countfies shorter series of data, and if we we are
interested in the lower tail of the mortality distributiolnig omission will be negligible. If, however, were
interested, e.g., in the variability of mortality acrossépe we should include these countries as well.



of the estimates (1). As an example Figure 1 shows femaleatitgréstimates at age 85 in
1980. Two small countries, Iceland and Luxembourg, havéhdedes close to the extremes
but show large standard errors, and we want to take thismdbon into account when

making inference op(a, t).
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Figure 1: Death rates for females at age 85 in year 1980 foy the21 countries included
in this study. Shown are estimates ah®l standard errors.

In this paper we therefore suggest a different approache&se of presentation we focus on
one age and one year and drop the dependenceandt in the notation in the following. We
consider a discrete distribution forwith a dense grid of mass-poinis,, £k = 1,..., K, and
probability masses, = P(u = my). Naturally, thep, sum to one. The grid can be equally
spaced on the scale of the,, but usually equidistant values on the log-scale= Inm;
will be more appropriate, especially for small valueg.of

For a given value of mortalityr;, the number of deathg; in unit j is a Poisson variable

with meanv; = n;m;. Thatis

exp{—n;my} (n;my)%

y;!

wjp = P(y; | my) = = a; exp{—n;my} m%" (2)



with

independent ok. The marginal distribution of thg; is therefore

K
k=1

To estimate the mixing distribution,, £ = 1,..., K, the EM-algorithm (Dempster et al.,
1977) is a natural choice.

The E-step results from the

Ply; [me) pe _ wik b 5)
P(y;) > wip

P(my | y;) =

(The constantsy; appear as factors in both numerator and denominator of @)cancel
out.)

In the M-step we obtalp(” from the current valueﬁ,gs) as

o) ZJ: 1 wppy (6)
j=1 J Zz 1 wjlplS)

(see e.g. Aitkin (1996)).

This procedure is not limited to observations from a Poiglistribution but can be used
more generally in mixtures of generalized linear modelgkiai 1999). Consequently, it
is also possible to study the mixture of Binomial variabliegrobabilities of deathy(a, t)
instead of death rateg«, t) are to be modeled.

Without any further restrictions on the the EM-algorithm will converge to the nonpara-
metric maximum likelihood estimate (NPMLE) of the mixingsttibution of .u(a, t) (Laird,
1978). Usually only a few mass-points carry positive prolit#s, leading to a rather spiky
and far from smooth mixing distribution. Furthermore, cergence of the EM-algorithm

typically is very slow.



To get round both drawbacks Eilers (2007) introduced thieviohg strategy. In each
iteration a smoothing step is introduced. That is, starfiog the current values of théj)

steps (5) and (6) are performed as before. However, befenetulting

~(s+1 i 1 Wik Pp pl(:) @)
j=1 J Zl 1 Wi by SF wip?

are introduced into the next step of the EM-iteration they smnoothed by an additional
smoothing step:

p(s—i—l) _ S}\(ﬁ(s-i-l)) (8)

with ptD = (pF* . plty and plet accordingly. The smoothing functias ()
depends on an additional parametehat controls the amount of smoothness introduced in
this step. Naturally, the smoothing step should preseregthperty , p(s“ = 1 of the

mixing distribution.

2.1 The smoothing sub-step

The smoothing is performed by applying a discrete Whittakeoother (Eilers, 2003). The
function S (.) solves, for a given value of the smoothing paramateahe following penal-

ized least-squares problem (for simplicity we drop theaitien indexs + 1 here):
Sx(p) = argmin {(p—=p)(p—P) + N p'DyDop + 2Xp'D D1p} 9)

where the matrice®; and D calculate first and second order differences of the elenoénts

p, respectively, i.e.,



Equation (9) implies that we determine the vector of the ngdlistributionp to be inserted
into the next E-step as the one, which is close to the outcdrtieeanost recent M-step (6)
— this is implemented by the sums of squales- p)’ (p — p) — however, variation between
neighboring elements qof is restricted by the penalty term€ p’' D, Dop + 2\ p' D} Dyp.
The larger the value ok, the stronger the effect of the penalization and the smodadtiee
resulting vectop will be. A value of A\ = 0 would imply no smoothing and the unmodified
EM-algorithm would be performed.

The combination of first and second order penalty terms idaltiee fact that we want to
estimate a mixing distribution whose individual elememit$have to be non-negative. This
is properly taken care of by the second penalty teiwyw’ D] D1p, as had been demonstrated
by Eilers and Goeman (2004). Also, the definition of the pgmglarantees that_, p;. will
equal one whenever based on a vegtathose elements sum to one.

Solving this penalized least-squares problem leads totarsysf linear equations fqor
(I + X2DyDy +2ADDy) p = p, (10)

which can be easily solved for given values\of
The practical implementation of this algorithm consistshaf following steps:

e A dense uniform grid of mass-points is chosen on the logesgalk In m,. The start-
ing values for the mixing distribution are commonly chossraainiform distribution

P = P(mg)=1/K,k=1,... K.

e The values of they;;, see equation (2), are determined, usually neglectingahees

of ;. These values only have to be calculated once during theaydrocedure.

e The marginal probabilities are calculated from (4) and nitezkinto (5). The M-step

(6) is performed.

e For the smoothing sub-step a value Johas to be chosen and currently has to be



selected by the user. Practically this is done by inspecésglts for a grid of\-values.
Generally the optimal values of the smoothing parameteen@p on the mass-point
grid, the number of observations included, and on the vaeafthe latent distribution
to be estimated. In our applications commonly values bétween 10 and 70 showed

good results.

e Forthe chosen value ofthe system (10) is solved and the resultingserted into the

next EM-iteration.

e The iterations are continued until the maximum differeneemMeen elements oft)

andp*Y is below a threshold. In our application we commonly chose

max [pi" — | < 17,
In all applications we performed the number of necessangatittns never exceeded

seven, demonstrating the efficiency introduced by the exidit smoothing step.

The resulting final estimatg = (py, ..., px)’ is a discrete but smooth approximation to the
latent densityf, .(m) of u(a, t), from which further parameters of interest, such as the mean

variance or low-percentage quantiles can be derived.

3 Application

Figure 2 illustrates our procedure for the example givenguie 1. The upper panel shows
the scaled likelihoods for thé = 21 observation. While large countries show very narrow
peaks, the likelihood functions for Iceland and Luxemboarg rather broad. The bottom
panel gives the estimated (hon-normalized) densityfer 85 andt = 1980 for the latent
mortality distribution (on log-scale).

In the following Figure 3 the estimated latent mortalitytdisutions are given for the age

range of 50 to 100 in years 2000. As the curves are given omsdate, the linear upward



Scaled likelihoods: age = 85, year = 1980
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Figure 2: Scaled likelihoods (top panel) for 21 countriesg &stimated latent mortality
distribution (bottom panel).
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Figure 3: Estimated latent mortality distributions for adg® to 100, in year 2000.

shift of the modes of the curves basically gives the expaakinicrease of mortality with
age. Furthermore the densities get more peaked with higlesr @n log-scale). Together
with the increase in means the variance fidu, t) increases over age though. The wave-
like pattern of the distributions over age appears in aleotyears, too, and presumably
is introduced by some interpolation schedule performetié HMD. This peculiar pattern
makes it obvious that additional smoothing over the ags-awuld be advantageous to make
mortality distributions for neighboring ages more alike.

Changes in the latent distribution can be compared morb/dgdiooking at image plots.
For the years 1970 and 2000 these are given in Figure 4, fagal between 30 and 100.
As it can clearly be seen the wavy pattern of the densitie®lsneflected in the image plot
as well. In the plot for the year 2000 the lines of the 5%- ared1@%-quantile of the latent
mortality distribution are given. It is evident that the wégy pattern observed also has an
impact on the trajectory of these quantiles over age, thugngan approach that jointly
smoothes the mixing distributions also over age even maseatde.

Finally, the latent distributions all are almost symmesia closely resemble a Normal
density. As an alternative to the smoothing step we can fitrenabdistribution, which

has the advantage that it can be completely characteriz@gsbiwo parameters, mean and
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Figure 4. Image plot of the latent mortality distributiorss fages 30 to 100, in year 1970
(top) and in year 2000 (bottom). Grey lines in the image fdd®@Mhdicate the 5% and 10%
guantiles of the latent mortality distributions estimaitediependently over ages.
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standard deviation. Low-percentage quantiles far, t) can then be directly derived from

the corresponding log-Normal distributions.

4 Discussion and Outlook

We presented an algorithm for estimation of latent mostalistributions for a group of
countries. While straightforward “best-practice" wouldlyplook at the lower (observed)
extreme values, our approach offers quantification of mapgets of variability of mortal-
ity. Once latent distributions are estimated for a rangeeafry and ages, one can compute
summary statistics, like quantiles and inter-quantileggesnand study them for meaningful
and interesting demographic patterns.

It is fruitful to draw the parallel with meta-analysis in meal statistics, the area for
which the algorithm was originally developed. The latergtalbution can be interpreted
as a prior distribution in an empirical Bayes sense. One campate empirical posterior
distributions for individual countries, which can be usedquantify uncertainties and to
improve individual mortality estimates by “shrinking”. Ounits observation are countries,
but in larger countries the model might be useful to studiestar provinces.

Currently the choice of the smoothing parameter is doneestilsgly. Automatic ways to
select the value ok clearly have to be developed. Furthermore, the estimafitimedatent
mixing distribution is performed independently over agd eime. It is however reasonable
to assume that the distribution of mortalitya, ¢) varies smoothly over age and also, possibly
with exception of years with specific events such as sevadeegycs, over time. Hence it
would be natural to ‘join’ neighboring mixing distributierioy an additional penalty to allow

for smooth variation of the densitig¢’s . () over age or time.
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