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Abstract

Similar to the best-practice life expectancy, the best-practice mortality surface over age

and time can be estimated. Reliability is a serious issue, because population size across

countries varies over several orders of magnitude. Our solution is to estimate a la-

tent mortality distribution, properly accounting for observed magnitudes. This brings a

meta-analytic framework to mortality studies, opening many new opportunities to study

variability between demographic units in a quantitative way.

1 Introduction

Best-practice life expectancy, that is the highest life expectancy achieved in a particular year,

has been rising linearly for almost 150 years, with a slope ofabout three months per year

(Oeppen and Vaupel, 2002). The country in which life expectancy had been highest varied

over the years. For women Japan has been leading for the last twenty years, while in the last

five years males in Iceland performed best.
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High life expectancy is linked to low mortality, but this does not necessarily imply that

the leading country automatically performed optimally with respect to mortality at every

single age. Mortality may well have been lower in some other country at least for some ages.

Corresponding to the notion of best-practice life expectancy we can define the best-practise

mortality surface as the mortality surface consisting of the lowest values of mortality at every

age over the period of interest. This surface of minimal mortality would give the benchmark

in any particular year for any age, and it could be used to compare the performance of

different countries relative to what they could have achieved if they had performed optimally.

We may be able to assess the contribution of mortality at different ages to gaps between actual

performance and the tentative optimum, or we could demonstrate at what ages the countries

leading in life-expectancy performed this well, and where there would be room for further

improvement. The best-practice surface also could be analyzed like other mortality surfaces:

trends could be studied and future mortality levels could bepredicted.

A naive approach to estimate the best-practise mortality surface would be to calculate

empirical rates from several low-mortality countries and take the observed minimal value of

the death rates as the best-practise value. However, this approach is hampered by the fact

that low-mortality countries vary considerably in size. For example, the USA with more than

300 million inhabitants, but also Iceland with a total population number of about 300,000,

are among the low-mortality countries. Consequently, boththe number of people at risk and

the number of deaths observed can be quite small, introducing strong variability as well as

zero observed mortality for certain ages.

We present a meta-analytic framework that models the observed deaths as outcomes

based on a latent mortality distribution, varying over age and time. The observed data are

used to estimate this latent distribution. This approach not only allows to handle the problem

induced by strongly differing country sizes but it also enables more detailed studies of the

mortality distribution than just its minimal value.

2



2 Data and Model

We assume that information on the number of deaths and the number of individuals exposed

to risk is available forJ units, which can be countries, like in the application in this paper,

or regions within countries or larger geographic entities.

In this application we will use data on deaths and exposures for single years of age and

single years fromJ = 21 countries derived from the Human Mortality Database (HMD).

We consider ages from 30 to 100 and the period from 1970 to 2000. The countries included

in the study were: Austria, Australia, Belgium, Canada, Denmark, England and Wales, Fin-

land, France, Iceland, Italy, Japan, Luxembourg, Netherlands, New Zealand (Non-Maori

population), Norway, Portugal, Spain, Sweden, Switzerland, United States, West-Germany.1

Mortality at agea in yeart is denoted byµ(a, t) and we assume thatµ(a, t) varies across

units according a distribution with densityfa,t(m). That is, mortalityµ(a, t) is itself con-

sidered to be a random variable, having a latent distribution, which can only be inferred

indirectly. Mortalityµj(a, t) in any of theJ units is a realization from this densityf(a,t)(m).

To make inference on the distribution ofµ(a, t) an immediate solution would be the follow-

ing: If yj(a, t) is the number of deaths in unitj at agea in yeart andnj(a, t) denotes the

corresponding exposures, then we could estimate theµj(a, t) by the empirical rates

µ̂j(a, t) =
yj(a, t)

nj(a, t)
, (1)

and therefrom derive mean, variance or other sample statistics of interest. One drawback of

this strategy is that the accuracy of the empirical rates in the different units is not taken into

account. This is particularly relevant for sample extremes, where units with small exposures

and/or number of events may lead to high or low mortality estimates due to higher variability

1The HMD currently covers a total number of 32 countries, someof which (from Eastern and South Eastern
Europe and Taiwan) were not included here. These countries offer shorter series of data, and if we we are
interested in the lower tail of the mortality distribution this omission will be negligible. If, however, were
interested, e.g., in the variability of mortality across Europe we should include these countries as well.
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of the estimates (1). As an example Figure 1 shows female mortality estimates at age 85 in

1980. Two small countries, Iceland and Luxembourg, have death rates close to the extremes

but show large standard errors, and we want to take this information into account when

making inference onµ(a, t).
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Figure 1: Death rates for females at age 85 in year 1980 for theJ = 21 countries included
in this study. Shown are estimates and±2 standard errors.

In this paper we therefore suggest a different approach. Forease of presentation we focus on

one age and one year and drop the dependence ona andt in the notation in the following. We

consider a discrete distribution forµ with a dense grid of mass-pointsmk, k = 1, . . . , K, and

probability massespk = P (µ = mk). Naturally, thepk sum to one. The grid can be equally

spaced on the scale of themk, but usually equidistant values on the log-scaleηk = ln mk

will be more appropriate, especially for small values ofµ.

For a given value of mortalitymk the number of deathsyj in unit j is a Poisson variable

with meanνj = njmk. That is

wjk = P (yj |mk) =
exp{−njmk} (njmk)

yj

yj!
= αj exp{−njmk}m

yj

k (2)
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with

αj = n
yj

j /yj! (3)

independent ofk. The marginal distribution of theyj is therefore

P (yj) =
K

∑

k=1

wjkpk. (4)

To estimate the mixing distributionpk, k = 1, . . . , K, the EM-algorithm (Dempster et al.,

1977) is a natural choice.

The E-step results from the

P (mk | yj) =
P (yj |mk) pk

P (yj)
=

wjk pk
∑

l wjlpl

. (5)

(The constantsαj appear as factors in both numerator and denominator of (5) and cancel

out.)

In the M-step we obtainp(s+1)
k from the current valuesp(s)

k as

p
(s+1)
k =

J
∑

j=1

1

J

wjk p
(s)
k

∑K

l=1 wjl p
(s)
l

(6)

(see e.g. Aitkin (1996)).

This procedure is not limited to observations from a Poissondistribution but can be used

more generally in mixtures of generalized linear models (Aitkin, 1999). Consequently, it

is also possible to study the mixture of Binomial variables if probabilities of deathq(a, t)

instead of death ratesµ(a, t) are to be modeled.

Without any further restrictions on thepk the EM-algorithm will converge to the nonpara-

metric maximum likelihood estimate (NPMLE) of the mixing distribution ofµ(a, t) (Laird,

1978). Usually only a few mass-points carry positive probabilities, leading to a rather spiky

and far from smooth mixing distribution. Furthermore, convergence of the EM-algorithm

typically is very slow.
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To get round both drawbacks Eilers (2007) introduced the following strategy. In each

iteration a smoothing step is introduced. That is, startingfrom the current values of thep(s)
k

steps (5) and (6) are performed as before. However, before the resulting

p̃
(s+1)
k =

J
∑

j=1

1

J

wjk p
(s)
k

∑K

l=1 wjl p
(s)
l

(7)

are introduced into the next step of the EM-iteration they are smoothed by an additional

smoothing step:

p(s+1) = Sλ(p̃
(s+1)) (8)

with p(s+1) = (p
(s+1)
1 , . . . , p

(s+1)
K )′ and p̃(s+1) accordingly. The smoothing functionSλ(.)

depends on an additional parameterλ that controls the amount of smoothness introduced in

this step. Naturally, the smoothing step should preserve the property
∑

k p
(s+1)
k = 1 of the

mixing distribution.

2.1 The smoothing sub-step

The smoothing is performed by applying a discrete Whittakersmoother (Eilers, 2003). The

functionSλ(.) solves, for a given value of the smoothing parameterλ, the following penal-

ized least-squares problem (for simplicity we drop the iteration indexs + 1 here):

Sλ(p) = arg min
p

{

(p − p̃)′(p − p̃) + λ2 p′D′

2D2p + 2λ p′D′

1D1p
}

, (9)

where the matricesD1 andD2 calculate first and second order differences of the elementsof

p, respectively, i.e.,

D1 =













−1 1 0

. . . . . .

0 −1 1













D2 =













1 −2 1 0

.. . . . . . . .

0 1 −2 1













.
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Equation (9) implies that we determine the vector of the mixing distributionp to be inserted

into the next E-step as the one, which is close to the outcome of the most recent M-step (6)

— this is implemented by the sums of squares(p− p̃)′(p− p̃) — however, variation between

neighboring elements ofp is restricted by the penalty termsλ2 p′D′

2D2p + 2λ p′D′

1D1p.

The larger the value ofλ, the stronger the effect of the penalization and the smoother the

resulting vectorp will be. A value ofλ = 0 would imply no smoothing and the unmodified

EM-algorithm would be performed.

The combination of first and second order penalty terms is dueto the fact that we want to

estimate a mixing distribution whose individual elementspk have to be non-negative. This

is properly taken care of by the second penalty term2λ p′D′

1D1p, as had been demonstrated

by Eilers and Goeman (2004). Also, the definition of the penalty guarantees that
∑

k pk will

equal one whenever based on a vectorp̃ whose elements sum to one.

Solving this penalized least-squares problem leads to a system of linear equations forp

(I + λ2D′

2D2 + 2λD′

1D1) p = p̃, (10)

which can be easily solved for given values ofλ.

The practical implementation of this algorithm consists ofthe following steps:

• A dense uniform grid of mass-points is chosen on the log-scaleηk = ln mk. The start-

ing values for the mixing distribution are commonly chosen as a uniform distribution

p
(0)
k = P (mK) = 1/K, k = 1, . . . , K.

• The values of thewjk, see equation (2), are determined, usually neglecting the values

of αj. These values only have to be calculated once during the whole procedure.

• The marginal probabilities are calculated from (4) and inserted into (5). The M-step

(6) is performed.

• For the smoothing sub-step a value ofλ has to be chosen and currently has to be
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selected by the user. Practically this is done by inspectingresults for a grid ofλ-values.

Generally the optimal values of the smoothing parameter depends on the mass-point

grid, the number of observations included, and on the variance of the latent distribution

to be estimated. In our applications commonly values ofλ between 10 and 70 showed

good results.

• For the chosen value ofλ the system (10) is solved and the resultingp inserted into the

next EM-iteration.

• The iterations are continued until the maximum difference between elements ofp(s)

andp(s+1) is below a thresholdε. In our application we commonly chose

max
k

|p
(s+1)
k − p

(s)
k | < 1e−6.

In all applications we performed the number of necessary iterations never exceeded

seven, demonstrating the efficiency introduced by the additional smoothing step.

The resulting final estimatêp = (p̂1, . . . , p̂K)′ is a discrete but smooth approximation to the

latent densityfa,t(m) of µ(a, t), from which further parameters of interest, such as the mean,

variance or low-percentage quantiles can be derived.

3 Application

Figure 2 illustrates our procedure for the example given in Figure 1. The upper panel shows

the scaled likelihoods for theJ = 21 observation. While large countries show very narrow

peaks, the likelihood functions for Iceland and Luxembourgare rather broad. The bottom

panel gives the estimated (non-normalized) densityfora = 85 andt = 1980 for the latent

mortality distribution (on log-scale).

In the following Figure 3 the estimated latent mortality distributions are given for the age

range of 50 to 100 in years 2000. As the curves are given on log-scale, the linear upward
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Figure 2: Scaled likelihoods (top panel) for 21 countries, and estimated latent mortality
distribution (bottom panel).
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Figure 3: Estimated latent mortality distributions for ages 50 to 100, in year 2000.

shift of the modes of the curves basically gives the exponential increase of mortality with

age. Furthermore the densities get more peaked with higher ages (on log-scale). Together

with the increase in means the variance forµ(a, t) increases over age though. The wave-

like pattern of the distributions over age appears in all other years, too, and presumably

is introduced by some interpolation schedule performed in the HMD. This peculiar pattern

makes it obvious that additional smoothing over the age-axis would be advantageous to make

mortality distributions for neighboring ages more alike.

Changes in the latent distribution can be compared more easily by looking at image plots.

For the years 1970 and 2000 these are given in Figure 4, for allages between 30 and 100.

As it can clearly be seen the wavy pattern of the densities is well reflected in the image plot

as well. In the plot for the year 2000 the lines of the 5%- and the 10%-quantile of the latent

mortality distribution are given. It is evident that the regular pattern observed also has an

impact on the trajectory of these quantiles over age, thus making an approach that jointly

smoothes the mixing distributions also over age even more desirable.

Finally, the latent distributions all are almost symmetricand closely resemble a Normal

density. As an alternative to the smoothing step we can fit a normal distribution, which

has the advantage that it can be completely characterized byjust two parameters, mean and
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Figure 4: Image plot of the latent mortality distributions for ages 30 to 100, in year 1970
(top) and in year 2000 (bottom). Grey lines in the image for 2000 indicate the 5% and 10%
quantiles of the latent mortality distributions estimatedindependently over ages.
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standard deviation. Low-percentage quantiles forµ(a, t) can then be directly derived from

the corresponding log-Normal distributions.

4 Discussion and Outlook

We presented an algorithm for estimation of latent mortality distributions for a group of

countries. While straightforward “best-practice" would only look at the lower (observed)

extreme values, our approach offers quantification of many aspects of variability of mortal-

ity. Once latent distributions are estimated for a range of years and ages, one can compute

summary statistics, like quantiles and inter-quantile ranges and study them for meaningful

and interesting demographic patterns.

It is fruitful to draw the parallel with meta-analysis in medical statistics, the area for

which the algorithm was originally developed. The latent distribution can be interpreted

as a prior distribution in an empirical Bayes sense. One can compute empirical posterior

distributions for individual countries, which can be used to quantify uncertainties and to

improve individual mortality estimates by “shrinking". Our units observation are countries,

but in larger countries the model might be useful to study states or provinces.

Currently the choice of the smoothing parameter is done subjectively. Automatic ways to

select the value ofλ clearly have to be developed. Furthermore, the estimation of the latent

mixing distribution is performed independently over age and time. It is however reasonable

to assume that the distribution of mortalityµ(a, t) varies smoothly over age and also, possibly

with exception of years with specific events such as severe epidemics, over time. Hence it

would be natural to ‘join’ neighboring mixing distributions by an additional penalty to allow

for smooth variation of the densitiesfa,t(m) over age or time.
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