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Abstract 

 
A number of new methods of analyzing time to occurrence variables for events of interest in demography 

e.g.,  marriage, mortality, birth, leaving parental home, postpartum amenorrhoea,  breastfeeding etc. have 

been developed in the recent years using the World Fertility Survey (WFS) and the Demographic and 

Health Surveys (DHS) data. These methods rely upon retrospective information from life or birth histories 

and recollections of past events. Retrospective information of the sort is known to be affected by recall 

errors which result in the omission of events, the misplacement of dates, and the distortion of reports of 

duration. For example, analysis of breastfeeding information using retrospectively reported ages of 

weaning for all births that occurred during the three or five years preceding the survey commonly display 

marked heaping at durations 6, 12, and 18 months. The present article proposes to use a nonparametric 

kernel estimation procedure to obtain a smooth estimate of hazard function based on retrospectively 

reported duration data that can address the problem of heaping due to recall errors. Following Ramlau-

Hansen (1983), smooth estimate of hazard of weaning is obtained by smoothing the increments of Nelson-

Aalen (NA) cumulative hazard function estimate and illustrated using duration of breastfeeding data for six 

North Eastern states of India from the last two National Family and Health Surveys. Approximate bias and 

95% confidence interval for these estimates are also obtained using their respective asymptotic expressions. 

Further, under additive error model, a kernel-type deconvolving density estimator (Wand and Jones, 1995) 

of durations of breastfeeding is proposed by smoothing the increments of Kaplan-Meier (KM) cumulative 

distribution function. Using simulated data it has been shown that in small and moderately censored 

samples these estimators can reduce the bias substantially. 
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1. INTRODUCTION 

During the past two decades studies on health and fertility implications of breastfeeding 

pattern have received much attention. The diverse sources of evidences suggest that, at 

least in developing countries, breastfeeding has non-trivial beneficial effects on infant 

health and survival (Briend et al, 1988; Cabigon, 1997; Huffman et al 1984; Majumder, 

1991; Nath et al 1994). Increased risks of mortality and morbidity for children who are 

followed by other births after very short interval and hence are breastfed for shorter 

durations have been supported by diverse data sources ( Cabigon, 1997; Goldberg et al, 

184; Palloni et al 1986; Ratherford et al, 1989). 
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The duration and intensity of breastfeeding have significant effects on both mothers and 

children. These effects vary by both the duration and intensity of breastfeeding. Previous 

studies show that the countries in which there has been a decline either in initiation or 

duration of breastfeeding include Brazil, Thailand, Taiwan, South Korea and Mexico( 

Sousa et al, 1975, Chayovan et al, 1990; Milman, 1986). Studies in India have also shown 

a decline in breast-feeding trends, especially in urban areas (Chhabra et al, 1998). 

National Family Health Surveys in India reveal that breastfeeding is nearly universal and 

there is an increase of one month in the median duration of breastfeeding over a period of 

five years (IIPS, 1995; IIPS and ORC Macro, 2000). 

 

Prompted by the reported decline in the average durations and proportions of women 

initially breastfeeding, WHO (1991) recommended to the developing countries initiation 

of breastfeeding soon after birth and only breast milk to babies up to 4–6 months of age. 

Under the Reproductive and Child Health Programme, the Government of India 

recommends that infants should be exclusively breastfed from birth to age four months. 

Most babies do not require any other foods or liquids during this period. By age seven 

months, adequate and appropriate complementary foods should be added to the infant’s 

diet in order to provide sufficient nutrients for optimal growth. It is recommended that 

breastfeeding should continue, along with complementary foods, through the second year 

of life or beyond. 

 

There is a great deal of variability in the findings on breastfeeding differentials and trends 

in developing countries which are not always in agreement and consistent. Estimates of 

average duration of breastfeeding , for example, can be quite sensitive to the data and the 

method of analysis employed. Generally, the estimates referred to are based on 

retrospective information from birth histories and on mothers’ recollection of past 

breastfeeding behaviour. Retrospective information of the sort is known to be affected by 

recall errors which result in the omission of events, the misplacement of dates, and the 

distortion of reports of duration. Yet another factor justifies caution is that these findings 

may be model specific, i.e., they could be sensitive to the choice of model for estimates 

of parameters. 
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The present article proposes a set of kernel-type estimators for hazard and density 

function of breastfeeding duration based on retrospectively reported data that can address 

the shortcomings of the existing estimators. In section 2, I discuss the sources of data 

used in the present work and some of the methodological issues in analyzing the 

information on breastfeeding from large scale health surveys. Kaplan-Meier and Nelson-

Aalen estimates of survival functions are obtained in section 3 using data from the last 

two National Family Health Surveys for six north-eastern states in India. In section 4, I 

propose a kernel-type estimator of hazard of weaning and obtain the large sample bias 

corrected estimates and confidence intervals. The last section is devoted to obtain a 

kernel-type deconvolving density estimator of durations of breastfeeding under non-

negligible additive type recall error. 

  

2. Data and Methodological Issues 

For the present analysis, the information on breastfeeding in six north-eastern states of 

India: Manipur, Meghalaya, Mizoram, Nagaland, Arunachal Pradesh and Tripura have 

been pooled that are available from two different National Family Health Surveys (IIPS, 

1995, 2000). The first National Family Health Survey (NFHS-1) conducted during 

February to June 1993, gathered information on a representative sample of 6266 ever 

married women aged 13 – 49. Whereas the  NFHS-2, conducted during May 1999 to June 

2000, gathered information on 6467 ever-married women aged 15 – 49. Information of 

breastfeeding was collected for the children of interviewed women born in the four years 

preceding the survey of NFHS-1 and three years preceding NFHS-2. For any given 

woman, a maximum of three births were included in the analysis for NFHS-1 whereas a 

maximum of only two births were included in the analysis of NFHS-2. For a total of 3525 

children information on breastfeeding duration were collected for NFHS-1 of whom 1914 

cases were still breast feeding at the date of interview or were breastfed until died. For 

NFHS-2, information on duration of breastfeeding on a total of 2792 children were 

collected of whom 2052 cases were still breastfeeding at the date of interview or have 

breastfed their child until died. The rest of the children completed their breast feeding. 

The duration of breastfeeding for the births who are still breastfed is calculated as the 

difference between their birth dates and the date of the survey. 
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In an excellent review, Trussell et al (1992), argued that information on breastfeeding 

collected in both the World Fertility Survey (WFS) and the Demographic and Health 

Surveys (DHS) can be analysed in two ways. The current-status information (yes/no) on 

whether a woman was still breastfeeding her most recent child at the time of survey, can 

be used to compute the proportion of children who are still breastfed by single month of 

age at interview. Alternatively, retrospective reported ages of weaning for children who 

are no longer being breastfed can be used. The authors maintained that the current-status 

measures lead to unbiased estimates of the survival function for a sample of births that 

occur during a fixed period. The estimates of the survival function so obtained, however, 

often fail to decline monotonically and are subject to larger variations. On the other hand, 

retrospectively reported ages of weaning commonly display marked heaping at durations 

6, 12, 18 and 24 months. Of course, such heaping may be genuine, and may reflect 

societal norms about appropriate weaning times. However, their comparison with the 

durations computed from the births, who are currently breastfeeding, show clearly that 

such heaping is less evident in the latter. We illustrate this by plotting the proportion of 

births for both the status category: children who are weaned and children who are still 

breastfed against their age in months in figure-1. Furthermore, data for the last closed 

interval represent, at least partially, a self selected group of short breast feeders and thus 

add selection bias to the existing reporting bias. In this study, I have chosen to analyse the 

breastfeeding information for all births that occurred during a fixed time period preceding 

the survey so that the results are not bias upward by excluding births from women with 

short birth intervals. 

The information on breastfeeding duration in the current open interval is complete only 

for the children who were already weaned at the time of interview while it is not 

complete for those who were breastfeed until death and were breastfeeding at the time of 

interview. So for the analysis of breastfeeding duration, the durations which are not 

complete are regarded as right censored. 

 

3. Estimation of Survival Function 

We consider non-parametric procedure for estimating the probability S(x) of surviving to 

time x, using a random sample X1, X2, …, Xn of death times from a distribution F(x). The 
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Xi are censored on the right by random variables Ci, so that one observes only min(Xi, Ci) 

= Yi, i=1,…..,n. The Ci’s are are a random sample, drawn independently of the Xi, from a 

distribution G(c). We let Y(1) ≤ ….≤ Y(n) denote the ordered observations, and let 

( ))i()i(i CXI ≤=δ  be an indicator for the event that Y(i) is uncensored. 

Kaplan and Meier (1958) developed the nonparametric estimator of S(x) as 

∏ 






 −
=

≤

δ

xY i

ii
KM

)i(

i

r

dr
)x(Ŝ  … …(3.1) 

where ri = # alive at time Y(i)- , di = # died at time Y(i). The Nelson-Aelen estimator of the 

survival function is  

 =)x(ŜNA
( )xˆ

e Λ−  with ∑ δ=Λ
≤xY i

i
i

)i(
r

d
)x(ˆ .  … …(3.2) 

 

Greenwood’s formula for the variance of the survival function 

∑

∑

≤

≤

−
=

−
=

t)i(Y iii

i

x)i(Y iii

i2

)dr(r

d
))x(Ŝ(lnV̂or

)dr(r

d
))x(Ŝ())x(Ŝ(V̂

 … …          (3.3) 
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The endpoints of a 100(1-α)% confidence interval for S(x) on the cumulative hazard or 

log-survival scale is given by 

 )))x(Ŝ(lnêsz)x(Ŝexp(ln 2/1 α−±  … …                                     (3.4) 

 

Figure-3.1 
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Figure 3.1 shows the plots of Kaplan-Meier and Nelson-Aalen estimates of survival 

function and the jumps in these estimates may be observed at times multiple of 6 months 

as discussed earlier. Figure 3.1 (a) and 3.1(b) provide the graphs of estimated Kaplan-

Meier survival functions along with their 95% confidence band based on NFHS-1 and 

NFHS-2 data of breast feeding duration. Fig. 3.1(c) shows the comparison of the survival 

curves for NFHS-1 and NFHS-2 and a longer breast feeding experience is evident in the 

later survey from this comparison, the estimated survival curve for NFHS-2 lying 

completely above that of NFHS-1.   

 

4. The Kernel function Estimators of Hazard 
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 The estimates ( )tŜKM  and )t(ŜNA clearly share some disadvantages in the present context. 

First, both of these depict jumps at durations of multiple of six months as the reported 

durations are coupled with recall error. Second, they do not provide a useful estimate of 

hazard rate ( ) ( ) ( )tSlndt/dt −=λ , which is often of real interest. 

It is natural to seek for an estimator of ( )tλ that can be motivated through the Nelson-

Aalen cumulative hazard function )t(Λ . We shall first obtain a smoothed estimator of 

hazard function by smoothing the increments of the Nelson-Aalen cumulative hazard 

function ( )tΛ̂  defined in (2.2). Following Ramlau-Hansen (1983), and Anderson et al 

(1993), the kernel function estimator for the hazard function ( )tλ̂  may be defined as 

( ) ( )∫ Λ






 −
=λ − sˆd

b

st
Kbtˆ 1  

where K is a bounded function vanishing outside [-1,1] and ∫
−

=
1

1

1dx)x(K , which we call 

the kernel and b is a positive number called the bandwidth. As earlier, denoting t(1)< t(2) < 

…< t(n)  as successive jump times,  ( )tλ̂  may equivalently be written as  

( ) j
j

)j(1 l
b

tt
Kbtˆ ∑ 









 −
=λ −  

where lj is the size of the jump of Λ̂  at tj. Thus, ( )tλ̂  is a weighted mean of the 

increments lj of the Nelson-Aalen estimator over [t-b, t+b]. The integral of λ̂ , which 

results in a smoothed estimate of cumulative hazard ( )tΛ , is 

( ) ( ) ( )∑∫ ∑ ∫ α=






 −
=λ −−

j

jj

1

t

0 j

t

0

j

j

1 ltbdu
b

tu
Klbduuˆ . 

The coefficients αj(t) are known functions which do not depend on lj. The estimator λ̂  is 

pointwise consistent and under stronger conditions it is uniformly consistent ( Anderson 

et al, 1993).  
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Figure 4.1(a) contains estimates of the hazard function λ(t) for NFHS-I data on 

breastfeeding durations, using bandwidth b = 10 months and the following three kernels, 

all of which take the value 0 outside of [-1, 1]; the triangle kernel 

( ) ( ) ,1x1,x1xK T ≤≤−−=  

the Epanechnikov kernel 

( ) ( ) ,1x1,x1
4

3
xK 2

E ≤≤−−=  

and the quartic kernel 

( ) ( ) .1x1,x1
16

15
xK

22

Q ≤≤−−=  
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It is seen that the triangle kernel gives slightly less smoothing than the other two kernel 

functions. But, broadly speaking, the three estimates are roughly identical, all displaying 

a clearly increasing weaning hazard with age up to the age of 18 months and thereafter 
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the hazard declines sharply. Figure 4.1(b) compares the hazard rate estimated from 

NFHS-1 and NFHS-2 data. As it is expected, the estimated hazard is found to be 

substantially lower in NFHS-2. However, the overall pattern remains unchanged. The 

function attains its maximum at the age of 18 months and then sharply declines. 

 

Figure 4.2 
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4.1 Large sample bias and confidence interval 

Andersen et al (1983) has studied the asymptotic behaviou of the mean integrated 

squared error and optimal bandwidth for estimating λ(t). Let t є T , where T is a fixed 

continuous time interval and let 0 < t1 < t2 < t be fixed numbers and that λ is twice 

continuously differentiable on [t1-c, t2+c] ⊂  T  for some c > 0. Restricting our choice to 

the kernel functions satisfying  

,0kdt)t(Ktand,0dt)t(tK,1K(t)dt 2

1

1

1

1

2
1

1

>=∫ ∫=∫ =
− −−

 

we have the following asymptotic expression for the bias of the kernel estimator 
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( ) ( )[ ] ( ) 2
''2 ktb

2

1
ttˆE λ≈λ−λ  

where λ
′′
(t) is the second derivative of λ(t). An estimate of the local bias using a particular 

kernel K and bandwidth b may, thus, be obtained as ( ) 2

''2 ktˆb
2

1
λ , where ( )tˆ ''λ  is some 

estimate of the second derivative of λ(t). To estimate ( )t''λ , consider some kernel K1 

which is twice differentiable on the whole line. Then, we get  

( ) )t(ˆd
b

tt
K

b

1
tˆ

1

)j(

13

1

Λ






 −″
=λ ′′ ∫ . 

Using the simplest symmetric twice differentiable kernel 

( ) ( ) ( )xIx1
32

35
xK )1,1(

32

1 −−=  

we see that 

( ) ( ) ( )xIx5x61
16

105
xK )1,1(

42

1 −+−−=
″

. 

 Further, the large sample variance of ( )tλ̂ , may be calculated as 

( ) ( )[ ] ≈λ−λ
2

ttˆE ( ) )t(d
)t(r

)b/)tt((K
btˆ )j(

2

j )j(

)j(12
∑











 −

=τ −  . 

Also, the 95% confidence limits for the smoothed hazard function ( )tλ̂  is obtained as 

( )
( )
( )







λ

τ
±λ

tˆ

tˆ
96.1exptˆ . 

Figure 4.2 provides bias corrected estimates ( ) ( ) 2
''2 ktˆb

2

1
tˆ λ+λ , and the 95% confidence 

limits for NFHS-1 and NFHS-2 data on reported age at weaning. In the present case, the 

influence of bias correction for the smoothed hazard estimate does not appear to be   

substantial. Although, 95% confidence limits are provided for these estimates, care has to 

be exercised in the interpretation of these limits in view of the inherent bias.  
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5. The Density function Estimators 

A kernel density estimator of fX can be motivated through the Kaplan-Meier estimator of 

the distribution function FX, which is given by 

( ) ( )













>

≤≤






 −
−

≤≤

=−= +

≤

∏

)n(

)1i()i(

x)i(Y i

ii

)1(

KMKM

Yx,1

YxY,
r

dr
1

Yx0,0

xŜ1xF̂  

The kernel estimator of fY(x) induced by KMF̂  is then 

( ) ( )∫ 






 −
= − yF̂d

h

yx
Khh,xf̂ KM

1
Y  

j

j

)j(1 s
h

Yx
Kh ∑ 







 −
= −                    (5.1) 

where sj is the size of the jump of KMF̂  at Y(j). 

We now assume that the observable times Y1, Y2, ……,Yn are contaminated with non-

negligible recall error such that 

n,......1i,ZYW iii =+=  

and, for each i, Zi is a random variable that is independent of Yi and has known density 

fZ, which we call the error density. If we apply the ordinary kernel estimate to the W1, …, 

Wn then we will obtain a consistent estimate of convolution  

ZYW fff ∗=  

rather than fY which we aim to estimate. Estimation of fY requires that we take into 

account the fact that it is convolved with fZ to give the density of the error contaminated 

data. Thus the estimation of fY is a problem of deconvolution type. A kernel type solution 

is obtained by using Fourier transform ( or characteristic function) properties and noting 

that 

)t()t()t(
ZYW fff φφ=φ  
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where gφ is used to denote the c.f. of a density g. According to the Fourier inversion 

theorem, the target density can be written as 

( )∫ φπ= −− dtte)2()y(f
Yf

ity1
Y  

( ) { }dt)t()t(e2
ZW ff

ity1
∫ φφπ= −−

 

provided .t0)t(
Zf ∀≠φ  An estimate of fY(y) is obtained by replacing fW by its kernel 

estimator ( ) ∑ 






 −
=

=

−
n

1i

i1
W

h

Wy
K)nh(h,yf̂  to obtain 

{ }∫ φφπ= −− dt)t()t(e)2()h,y(f̂
ZW

f)h,y(f̂

ity1
Y  

which is the deconvolving kernel density estimator ( Stefanski and Carroll, 1990). It can 

be shown (Wand and Jones, 1995) that the deconvolving kernel density estimator of the 

target density is 

( ) ∑ 






 −
=

=

−
n

1i

iZ1
Y h,

h

Wy
K)nh(h,yf̂ ……..                 (5.2) 

where  

( ) ( ) { }∫ φφπ= −−
dt)h/t()t(e2h,uK

ZfK
ity1Z                   (5.3) 

Kφ  being the characteristic function of the kernel K used in estimating .f̂W  Thus, the 

kernel 







⋅ h,K Z is to be used for estimating fY instead of K. This effective kernel 

differs from K in that its shape depends on the bandwidth. We now use ( )h,K Z ⋅  of 

(5.3) to rewrite (5.1) as 

( ) j
j

)j(Z1
Y sh,

h

Yx
Khh,xf̂ ∑ 









 −
= −                             (5.4)    
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5.1 Simulation Study of Small sample Bias 

We generate data through simulation to examine the small sample bias of the estimator 

)h,x(f̂Y  in (5.4). The effective kernel is obtained for two different error density 

functions. When the error density is Laplacian 

( ) ( ) 0;x,)xexp(2xf
1

Z >σ∞<<∞−σ−σ= −  

and that K(x) = Φ(x), the standard normal kernel, the effective kernel for deconvolution 

of Laplacian error is 

( ) ( ) ( ){ } .1xx1)x(h,xK 22Z −σ+Φ=                    (5.1.1) 

Supposing instead that the error variable has a N(0,σ
2
) distribution, the effective kernel 

would be 

( )
( ) ( ) 

























 σ−

−







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Further, we use ( ) )/xexp(1xF 1X λ−−=  and  ( ) )/cexp(1cG 2C λ−−= . The choices of 

pair of values for ),( 21 λλ  give rise to desired censoring proportion to indicate no 

censoring, moderate censoring and heavy censoring. Observations have been simulated 

from FX and GC for three different sample sizes n=30, 60, 100. The pulling mechanism to 

contaminate the simulated data is defined through the following function 














≤≤

≤≤

≤≤

<≤

<≤

=

32y28,30

27y21,24

20y15,18

15y9,12

9y4,6

)y(f  

 Table 5.1 presents the results showing bias at selected time points. We denote by B0, BL 

and BN the bias due to the density estimate )x(f̂Y in (5.1) without accounting for recall 

error, the bias due to the Laplacian error corrected density estimate and the bias due to  
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Table 5.1.  Small sample Bias B0, BL and BN for three different sample sizes and 

                   three different censoring percentages at selected time points 

 
Bias n 

1λ  2λ  
π Time 

B0 BL BN 

30 8 - 0  h = 1.8  h = 1.6, σ = 0.8 h = 2.2 ,σ = 0.9 

    6 -0.009 -0.003 -0.006 

    12 -0.002 0.000 -0.001 

    18 -0.002 -0.001 -0.002 

    24 0.000 0.000 -0.001 

30 12 36 27  h = 2.0  h = 2.0, σ = 0.7 h = 2.5 ,σ = 1.0 

    6 0.000 0.001 0.001 

    12 -0.016 -0.009 -0.010 

    18 0.009 0.013 0.012 

    24 -0.013 -0.010  -0.010 

    30 0.000 0.000 0.000 

    36 0.000 0.000 0.000 

30 14 12 53  h = 2.5  h = 2.5, σ = 1.0 h = 3.0 ,σ = 1.0 

    6 0.015 0.014 0.014 

    12 -0.025 -0.017 -0.020 

    18 -0.003 -0.003 -0.003 

    24 -0.001 -0.002 -0.002 

60 18 - 0  h = 3.0  h = 3.0, σ = 1.0 h = 3.5 ,σ = 1.0 

    6 0.006 0.005 0.005 

    12 -0.009 -0.006 -0.006 

    18 0.002 0.000 0.000 

    24 -0.002 -0.001 -0.001 

    30 0.002 0.001 0.001 

    36 0.000 0.000 0.000 

60 18 18 43  h = 2.5  h = 2.5, σ = 1.0 h = 3.5 ,σ = 1.0 

    6 0.012 0.012 0.012 

    12 -0.012  -0.006 -0.008 

    18 0.001 -0.001 -0.001 

    24 -0.005 -0.003 -0.004 

    30 0.002 0.003 0.003 

60 22 12 77  h = 2.0  h = 2.0, σ = 1.0 h = 2.5 ,σ = 1.0 

    6 -0.002 0.005 0.001 

    12 -0.005 0.001 -0.002 

    18 0.001 -0.001 0.000 

    24 0.002 -0.001 0.000 

    30 0.000 0.000 0.000 

100 8 - 0  h = 2.0  h = 2.0, σ = 0.8 h = 2.5 ,σ = 1.0 

    6 -0.002 0.001 0.001 

    12 0.000 0.000 0.000 

    18 -0.004 -0.003 -0.003 

    24 -0.001 -0.002 -0.002 

    30 -0.003 -0.001 -0.001 

    36 0.001 0.001 0.001 

100 18 22 39  h = 2.0  h = 2.0, σ = 1.0 h = 2.5 ,σ = 1.0 

    6 0.003 0.003 0.003 

    12 -0.001 0.003 0.004 

    18 0.001 0.001 0.000 

    24 -0.005 -0.003 -0.004 

    30 -0.001 0.000 0.000 

100 22 18 60  h = 2.5  h = 2.5, σ = 1.0 h = 2.5 ,σ = 1.0 

    6 -0.002 0.002 0.000 

    12 0.005 0.004 0.004 

    18 0.001 0.001 0.001 

    24 0.003 0.004 0.003 

    30 0.000 0.000 0.000 

the normal error corrected density estimate respectively. Table 5.1 illustrates the 

following general findings: (i) All estimators are fairly unbiased. (ii) The kernel density 
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estimator )x(f̂Y  by smoothing the Kaplan-Meier distribution function exhibits more bias 

than the other two estimators except at lower values of time ( t=6) in small sample 

samples (n=30, 60) with moderate to heavy censoring percentage (π = 27, 77). (iii) For 

large sample size (n=100) with moderate to heavy censoring, the effect of error correction 

in the bias reduction is little. 

5.2 Density Estimate from Duration of Breastfeeding Data 

We now obtain smooth density estimates from duration of breastfeeding data of NFHS-1 

and NFHS-2. Figure 5.2(a) provides three estimates of density of breastfeeding duration 

using NFHS-1 data: (i) smoothed estimate from Kaplan-Meier distribution function, (ii) 

estimate using Laplacian error correction, and (iii) estimate using normal error correction. 

Figure 5.2 (b) compares the smoothed estimates for NFHS-1 and NFHS-2. The right 

skewness of the distributions are evident from the plots. The curve for NFHS-1 is more 

skewed than the other. The plots in fig 5.1(a) show hardly any effect of error correction; 

smooth density sharply rises reaching its maximum at 14 months and then trails off 

gradually. The median duration of breastfeeding is 22 months for NFHS-1. It describes 

well the situation in the whole population. The relatively long right tail is a result of the 

few subjects who had long breastfeeding experience.   Figure 5.2 (b), on the other hand, 

is featured by a relatively heavier right tail; it shows that the NFHS-2 density curve 

reaches its maximum at 15 months while the median duration is 30 months. A longer 

breastfeeding experience is evident in the later survey from this comparison. 

 

6. Concluding Remarks. 

The kernel estimators of hazard and density functions for breastfeeding duration 

proposed in this article use the idea of convolving a kernel weight with the hazard and 

density estimates induced by the natural estimate of the cumulative distribution 

function. The estimators have attractive mean squared error properties (Wand and 

Jones, 1995) and are pointwise consistent (Anderson et al, 1993).  

For large samples, the effect of bias correction is little, subject to the appropriate 

selection of bandwidth parameter. One can make judicious use of any of the several 

hi-tech bandwidth selectors to implement the proposed estimators. One can also get 
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fairly precise confidence interval approximately except when only a few subjects are 

remaining in the risk set. 

 

Figure-5.2 
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