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Abstract

Empirical studies indicate that the transition to parenthood is influenced by
an individual’s peer group. To study the mechanisms that create interdependencies
across individuals’ transition to parenthood and its timing we apply an agent–based
simulation model. We build a one–sex model and provide agents with four different
characteristics. Based on these characteristics, agents endogenously form their net-
work. Network members then may influence the agents’ transition to higher parity
levels. Our numerical simulations indicate that accounting for social interactions can
explain the shift of first–birth probabilities in Austria over the period 1984 to 2004.
Moreover, we apply our model to forecast age–specific fertility rates up to 2021.
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1 Introduction

Human behavior, including childbearing behavior, is performed by socialized actors deeply
rooted in a web of social relationships such as those created by kinship, love, power,
friendship, competition or interest. Beliefs, norms, services, and goods are exchanged,
traded, negotiated, and enforced within informal social networks of personal communities
(Mitchell 1974). Within their social circle of relationships individuals may exchange infor-
mation about possibilities and consequences of specific childbearing choices, learn about
other persons’ preferences, form expectations on their future choices, feel induced to con-
form to others norms about family–related behavior, and modify their interpretation of a
specific behavior.

Interpersonal interactions among these relatively small groups of individuals produce so-
cial effects observable in macropatterns of behavior and demographic research on union
and family formation has concentrated on the latter. Empirical evidence increasingly sug-
gests social interaction as an important determinant of demographic behavior. Diffusion
processes are currently an integral part of the literature on fertility decline (Knodel and
van de Walle 1979, Watkins 1987, Cleland and Wilson 1987, Mason 1992, Pollak and
Watkins 1993, Palloni 1998). While most research is carried out in developing countries
some contagion models have been applied to union behavior in the European context
(Nazio and Blossfeld 2003). Diffusion approaches build on the idea that social networks of
kin, peers and institutions, in much the same way as markets and legal and the adminis-
trative system, are potential communication channels for ideas and behavior (Granovetter
1985, Rogers 1995).

In socio–demographic research, social determinants due to social interaction gained rel-
evance when the empirical evidence provided by the European demographic history of
the last century showed that regional patterns of fertility decline conformed very closely
to linguistic, ethnic, and religious territorial boundaries. Some socio–demographers inter-
preted these patterns as the result of an undergoing ideational change diffusing ideals
about smaller family size across political borders but following cultural lines (Watkins
1986; Bongaarts and Watkins 1996).

Consequently, the way in which attitudes, values, and norms spread within a popula-
tion became central in research on family and fertility. The effects of social interaction
mechanisms have been explored by using formal micro–analytical models, their effects
have been studied through non–agent–based simulations, whose fit with observed fertility
trends confirm the potential explanatory power of social interaction mechanisms (Rosero–
Bixby, 1993; Montgomery and Casterline, 1996; Kohler, 2000, 2001).
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In all these applications, social interaction enters fertility explanations, both at the micro
and macro level. Individual and population fertility are interdependent because the ag-
gregation of individual fertility behavior produces externalities (like the erosion of norms,
pressure to conform, and path dependency of the information exchange). Kohler (2001)
efficiently summarizes the features of this micro–macro link: a) social interaction can
alter the distribution of knowledge in the population and affect reproductive decisions
under uncertainty by conveying information on the consequences of low fertility or on the
dynamics of social change, b) it may establish a collective behavior among community
members and initiate a fertility change when other factors would instead inhibit it, c) it
may induce an endogenous transformation of social institutions and social norms.

The analysis of social mechanisms like social learning and social influence also plays an
increasingly relevant role in demographic explanations of observed family formation pat-
terns in contemporary Europe, such as the hypothesis formulated by Kohler et al. (2002)
on the emergence of lowest–low fertility. However, the increasing inclusion of social in-
teraction in the demographic theoretical framework matches with a relatively unrealistic
model of social learning and social influence mechanisms (Chattoe 2003). As noted by
Montgomery and Casterline, this refined modelling of the social processes reposes on a
weak conceptualisation: “Little is known about learning mechanisms and the formation
of perceptions in respect to demographic behavior. We are aware of no systematic investi-
gation of what would seem to be a central issue” (Montgomery and Casterline 1996:159).
Not only are the social mechanisms not specified in a satisfactory way; similar problems
exist in defining the influential relationships on childbearing decision–making.

This lack of precision seems to constitute a general problem in the development of demo-
graphic behavior theory. Specifically, there is a certain agreement that demography suffers
from a poor level of precision in theoretical construction, a statistical modeling that is
either not, or not sufficiently, theory–driven, and the non—or hard—observability of im-
portant concepts and indicators involved in the theory (Burch 1996, de Brujin 1999). This
weakness is partially due to the inadequateness of demographers’ methodological toolbox
in answering relevant demographic questions. The very recent inclusion of agent–based
simulations and systematic and comparative in–depth investigations offer new possibili-
ties to develop cognitive valid behavioral theories and to speculate on the consequences of
alternative micro–macro feedbacks in order to explain demographic patterns (Billari and
Prskawetz, 2003, Billari et al. 2003, Billari et al., 2006).

In this paper we introduce an agent–based model to study social interaction and, in
particular, endogenous network formation and its implication for changes over time in the
transition to parenthood. In the first place, such a model allows us to test whether changes
in age–specific fertility experienced in the past can be explained by social interactions.
Secondly, we can use this model to project age–specific fertility rates. Hence, our model
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we develop is not intended to explain the pattern of age-specific fertility but is designed
to explain how this pattern changes over time.

In section 2 we introduce the theory and hypothesis of fertility transitions and social
interaction and endogenous networks. Section 3 is devoted to the implementation of the
model. The data we use to calibrate our model are discussed in section 4. Simulation
results and fertility projections based on these simulation results are presented in section
5. Finally, section 6 concludes our findings.

2 Social interaction and fertility: theory and hypoth-

esis

Studies on fertility timing in developed countries have a strong explanatory role with
respect to individual life course transitions. These contributions include educational, oc-
cupational, partnership, and geographical mobility histories. The postponement and in-
creasing variability in these processes has often been associated with the observed delay in
childbearing. To account for fertility preferences in general, family background variables
or, more generally, early life experiences, constitute key indicators (Axinn et al. 1994).

Individuals’ fertility behavior depends not only on family background variables, and life
course paths, but also on the behavior and characteristics of other individuals as trans-
mitted through social networks. Several authors have emphasized the importance of social
interactions for fertility choices (Bongaarts and Watkins 1996; Montgomery and Caster-
line 1996; Bernardi 2003). As Bongaarts and Watkins (1996) argue, social interactions
have at least three aspects: the exchange of information, the joint evaluation of its mean-
ing, and social influence that constrains or encourages action. A comprehensive survey
of fertility and social interactions is documented by Kohler (2001). To understand the
divergence in the demographic behavior of different populations with relatively similar
environmental conditions, Kohler argues for a combination of economic fertility theory
(based on individual optimal and rational decision rules) and theories on social inter-
action (which incorporate the behavior of other members of the community/society).
Another contribution that emphasizes the relevance of social interactions in the context
of low fertility is by Kohler et al. (2002). They find that all lowest–low fertility countries,
i.e. all countries with total fertility rate (TFR) less than 1.3 have experienced a sharp
increase of the age of first birth and argue that this observation cannot be explained by
changing socioeconomic incentives alone: Social interactions (either impersonal, for exam-
ple, through the labor market or personal ones through peer groups for instance) must
have induced multiplier effects or multiple equilibria. Lyngstad and Prskawetz (2006) on
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the basis of Norwegian register data investigate whether siblings’ fertility decisions influ-
ence each other. Their results indicate that cross–siblings effects are relatively strong for
the respondents’ first birth, but weak for the second parity transition. A further inter-
esting demonstration of how social interaction affect demographic behavior is given by
Åberg (2003) who examined how the high–school peers of young Swedes influenced their
propensity to marry. She found that the share of peers’ married had positive effects on
the marriage rate, indicating that social interaction is in part driving individuals’ marital
decisions.

So far, two avenues have been explored in the literature. On the empirical side, studies have
aimed to identify or control for potential effects of social interaction on fertility (Bernardi
2003, 2007). On the more formal side, models have been developed that exogenously
define the structure of the social network and investigate its implication on demographic
behavior (Hernes 1972, Kohler 2001). In the present paper, we follow a recent development
in the network literature that aims to endogenously build up the social network structure
(Watts et al. 2002). For this purpose, we choose the framework of an agent–based model
where the mechanisms underlying the behavior of each agent—in particular, the choice
of social network, which in turn influences the fertility decision—is explicitly modeled.

For an individual, the social network (the set of “relevant others”) consists of people who
are close. Closeness is a general feature we shall exploit in what follows. In our context, the
term “close” refers to a distance that may represent a spatial distance, but might as well
represent a distance in terms of kinship, age, education, professional occupation, and so on.
Closer individuals are more likely to be relevant others. The size and characteristics of an
individuals’ social network may themselves depend on the individuals’ characteristics. For
instance, the number of relevant others increases with age during youth and adulthood,
at least up to ages that are important for processes such as getting married or having
children (Micheli, 2000). The literature on social networks has further shown dependencies
on additional individual characteristics and conditions under which the social network
changes:

Age: The aging process produces a reduction in the size but an increase in the density
of network partners since non–kins drop out (Wagner and Wolf 2001). But these changes
seem to reflect life course transitions rather than aging itself.

Marital status and parental status: There is extensive and consistent evidence on the vari-
ation of network by marital and parental status, from cross–sectional comparative studies
and longitudinal studies. Wellman et al. (1997) analyzed the changes in intimate ties of
individual informal social networks in Toronto between 1968 and 1978. They find that
the intimate relationships are relatively unstable over ten years. The median network has
retained only about one quarter of its initial members and family situations rather than
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aging itself account for this turnover. Not surprisingly, marital change (getting married or
divorced) seems to be the main triggering process for changes in the network: those who
experienced it replaced almost all (94%) of their network. Immediate and distant kin are
the most persistent ties compared to friends and neighbors. The transition to parenthood
seems to affect the circle of non–kin, whose members change even in the short one–year
time frame after pregnancy (Ettrich and Ettrich 1995). The shift in the composition of so-
cial networks taking place after the transition to parenthood is consistent with the results
from three similar studies in the United States and England, where parents’ networks and
non–parents networks are compared (Hammer et al. 1982). In addition to the positive
association between rearing of children and increased emphasis on kin connections, the
non–kin network composition shifts by including a higher number of friends as opposed
to working relationships.

Employment status: Hammer et al. (1982) find that motherhood decreases the total net-
work size essentially only for non–working mothers in the lowest social class. Moreover,
they find that among mothers, the composition of the network between kin and non–
kin members depends on the employment status. The number of kin within a network is
higher for non–working mothers than for working mothers, whereas the number of non–kin
network members is higher for employed mothers.

Education and gender: Moore (1990) finds that most differences between gender in the
social network composition of men and women in the US disappears when one con-
trols for age, employment, marital and parental status. Higher education or profes-
sional/managerial occupation entails a larger share of the network composed of non–kin
(Moore, 1990, p. 732, table 3). The only persistent difference is that women, compared
to men, are more “kin–keepers” (the share of kin that characterizes women networks is
larger when compared to men in similar structural positions).

We build up the social network of individuals based on a hierarchic structure of social
groups, where each individual is part of one group for each relevant characteristic. We
restrict the number of characteristics that determine the affiliation to a social group to
three: age, education, and intended education. The choice of these three characteristics is
based on the empirical findings summarized in the preceding paragraphs. Each individual
is part of three social groups. Individuals within one group are close, and therefore more
likely to belong to the same social network. Members of the social network influence the
behavior of each other through interaction. In our model, we assume that as the share of
mothers within the social network increases, the desire to give birth is intensified. In the
next section we introduce the agent–based model, focusing on the implementation of the
endogenous social network.
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3 Model implementation

We set up a one–sex model that allows us to simulate the different life cycle stages of
females. Although partnership plays a major role in the transition to parenthood, we
refrain from including mate–search into our model since it would increase the complexity
of the model and complicate the interpretation of the results.

Each individual agent has an identity number id, four characteristics, and a social network
that includes friends, siblings, and the agent’s mother.1 The agent’s characteristics are
age x, education e, intended education ie, and parity p. We set the lower and upper age
limit of reproduction to be equal at 15 and 49 years respectively and the maximum age
of our agents as 95 years. Though agents older than 49 cannot give birth in our model,
they still may influence other agents.

Education is an influential factor for social network formation and size (cf. Section 2)
and thus becomes our second characteristic. We assume that all children, i.e., individuals
younger than 15, have no education at all beyond the compulsory years of education, hence
their education is zero. For older individuals we distinguish three stages of education:
primary and lower secondary, upper secondary, and tertiary.

Since education affects an agent’s network not just on the day of graduation but has
influenced it already during training, we further include intended education as an impor-
tant characteristic of the agent.2 Based on these three characteristics—age, education and
intended education—an adult agent chooses on average s members for her social network.
These members influence the agent’s decision on childbearing, i.e. her parity, which con-
stitutes the fourth characteristic of the agent. We use six stages of parity, 0 to 5+. An
individual who gives birth to a child increases her parity by one. The agent’s desire to
give birth, that is to increase parity, is weakened or intensified by the influence of the
social network snw. A summary of the agent’s characteristics and parameters is shown in
Table 1.

Initial population

We initialize the simulation with N individuals and base our simulations on Austrian
data, as defined in section 4. The Austrian age distribution for females constitutes the

1The agent’s mother and siblings are not known for the initial population.
2The argument to include intended education in addition to attained education is based on the antic-

ipatory analysis in life–course research discussed in Hoem and Kreyenfeld (2006).
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Table 1: Summary of the agent’s characteristics and parameters.

Agent variables values

Identity number id 1 – N
Age x 0 – 95
Education e 0 – 3
Intended education ie 0 – 3
Parity p 0 – 5+
Age at first birth a 15 – 49
Social network snw 0 – N-1

initial age distribution. The level of education of individuals aged 15 or older is assigned
according to the Austrian age–specific educational distribution for females. On the basis
of the assigned age and educational level, each agent is assigned her parity according to
the Austrian age and education specific parity distribution of females.

Since most people finish their education before they turn 30, we assume that the educa-
tional distribution at age 30 in the base year determines the intended education at earlier
ages.3 Since empirical data show that transition to higher education is more common
for non-mothers than mothers, we further consider the agent’s parity when assigning the
intended education. Hence, we need to take the agent’s age x, parity p, and educational
level e into account when assigning intended education.

To assign intended education to a woman of age x ∈ [y, y + 5), parity p and education
level e we start with the parity distribution by age and education from the census of the
base year (see section 4). We denote qye(p) the share of women at parity p within the
group of women at age x ∈ [y, y +5) and at the level of education e. From the population
census we obtain the shares of women aged 30 with level of education e = 1, 2, and 3: q1,
q2, and q3.

The shares of the parity–age–education–specific groups are then multiplied by the share of
the corresponding educational level at age 30 to determine the probability for each level of
intended education. Thus, for all agents aged 15 to 29 with the current level of education

3Of course, some individuals finish secondary or tertiary education later than age 30. Therefore, it
seems to be desirable to look at the educational distribution, for instance, at the age of 40 or 50 to be sure
not to lose any individual obtaining a higher level of education during her life course. However, applying
the educational distribution of older cohorts would result in a bias toward lower levels of education since
higher education was not that common for older cohorts—this holds in particular for females.
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equal to 1 and parity p the probability, pr1, to be assigned an intended education ie = 1, 2,
or 3 is given as

pr1(ie = i|e = 1, p) =
qiqyi(p)

∑

3

j=1
qjqyj(p)

.

We do not allow an intended education ie lower than the already achieved education e.
Therefore, agents with e = 2 are assigned intended education ie = 2 or 3 according to

pr1(ie = i|e = 2, p) =
qiqyi(p)

∑

3

j=2
qjqyj(p)

.

and agents with e = 3 are assigned ie = 3. Agents younger than 15 are not assigned an
intended education, and for all individuals above the age of 28 the intended education ie is
set equal to the actual education.4 Moreover, individuals at educational level 1 and older
than 20 are also assigned actual education 1 as their intended education since transition
between level 1 and 2 practically happens only up to the age of 20. Thus, the intended
education is assigned randomly. It is based on the educational distribution of females at
age 30 in the base year and subject to the following restrictions:

ie ≥ e for all agents
ie = e if (x > 28) OR (x > 20 AND e = 1).

For agents with parity greater or equal to 1 an age at first birth a is assigned according to
the education–specific distribution of age at first births (cf. section 4). Since the behavior
of women in training for education level e is more comparable with the behavior of those
who have already achieved the level e, we assign the age at first birth a according to the
agents’ intended education ie. Once all initial agents have been assigned their individual
characteristics, adult agents create their social network by choosing relevant others based
on the three characteristics: age, education, and intended education.

Simulation steps

During each simulation step, each agent ages by one year and dies off at the age of 95.
Individuals younger than 15 are considered as children without education. At age 15 an
individual becomes an adult with education level 1 and an intended education assigned on

4Although some individuals advance to higher levels of education above that age limit, the period
data on which we base the empirical estimations do not lead to strictly positive transition rates for that
age group.
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the basis of the education distribution of the population aged 30. Further she builds her
own social network which includes friends chosen according to the procedure described
below. Agents born during the simulation already have a social network consisting of their
mother and siblings.5 Though children do not exhibit their own social network of friends,
they can nevertheless be part of one. When an agent turns 50, we assume that childbearing
ceases. However agents older than 50 may still influence adults of childbearing age.

In the course of the simulation an adult agent may change her educational level. The age–
specific educational transition rate is based on empirically observed transition rates for
Austria (see section 4). From empirical data we know that non–mothers are more likely to
increase their level of education, likewise are agents with a higher intended education. To
achieve this, we scale the empirical education transmission rate by the following multiplier

w(c) =
ppae(x, e + 1, p) ∗ h(e + 1, ie)

a(c)
∑

x,p,ie
ppae(x, e + 1, p) ∗ h(e + 1, ie)

,

where a(c) is the share of agents with the vector of characteristics c = (x, e, ie, p). We
assume that every agent may increase her educational level but postulate that those who
have not yet attained their intended education are subject to a higher transition rate.
The multiplier h(e + 1, ie) captures this assumption. It makes sure that within the set of
agents who progress from the level of education e to e+1 the share of those with intended
education ie less than e + 1 is smaller than the share of those with ie greater or equal
e + 1.

For the transition from education level 1 to level 2 we apply the weights

h(2, ie) =







1

25
. . . if ie = 1

12

25
. . . if ie = 2

12

25
. . . if ie = 3

and for the transition from level 2 to level 3 we apply

h(3, ie) =







1

25
. . . if ie = 1

1

25
. . . if ie = 2

23

25
. . . if ie = 3

.

In detail, in the group progressing from level 1 to level 2 the share of agents with ie = 1
is 4 percent (i.e. 1/25) and the shares with ie = 2 and ie = 3 are 48 percent each (12/25),
while in the group progressing from level 2 to 3 the shares with ie = 1 and ie = 2 are 4

5Through the inclusion of the mother as a peer, we attain the effect that the number of siblings
influences the agent’s fertility, in addition to the parity of the siblings themselves.
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percent each (i.e. 1/25) and the share with ie = 3 is 92 percent (23/25), provided there
are enough agents with each particular intended education.

As empirical data evidence that women with a higher parity have a lower transition rate
to higher education—in particular there is a pronounced difference between mothers and
non-mothers—we apply the multiplier ppae(x, e + 1, p) which represents the empirical
share of women with parity p at age x and education e + 1. Since these data are only
available for five–year age groups we assume that half of the births happened after the
transition to e + 1 and the other half before the transition.

Endogenous social network

As mentioned in the introduction, our model should take into consideration that links
in a social network may be based on any individual characteristic like age, kinship, love,
power, friendship, professional occupation, geography, and so on. Thus, we have agents
living in a multidimensional space, where each dimension represents one characteristic.
Watts et al. (2002) introduced a searchable network taking into account that individuals
partition the social world in more than one way. They applied this network to explain
the process of delivering messages to a target person. In the sequel we will use a similar
network structure for the diffusion of childbearing behavior.

The agents within such a searchable network exhibit network ties and individual char-
acteristics. For our purpose we consider the characteristics age, education, and intended
education to create a social network snw. Watts’ approach envisions that individuals or-
ganize the society hierarchically into a series of layers, where the top layer represents the
whole population, which is split according to the agent’s characteristics into smaller sub-
sets of individuals which are likewise split into more specific subgroups. The social groups
that are formed through this hierarchic division depend on the branching ratio b and the
group size g of the lowest hierarchic level. Branching ratio and group–size are exogenous
parameters which, together with the number of individuals, determine the depth of the
network hierarchy l. An agent is influenced by her social network snw concerning her
childbearing behavior.

Since the number of agents is continuously changing in our simulations, the hierarchy
depth l needs to be recalculated in each simulation step. For this reason we suggest
a slightly different variant as compared to the Watt’s procedure. We fill the hierarchic
groups sequentially with agents instead of literally splitting the population into groups.
Through this approach we avoid missing groups and fluctuating group sizes which would
occur due to the changing population size. The similarity among any two individuals,
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dij, is given by the height of their lowest common ancestor level in this hierarchy. If two
individuals i and j belong to the same group, we define their similarity dij equal to 1,
if they belong to different groups that are directly connected, their similarity becomes
dij = 2 and so on. For instance agents i and j in Figure 1 are in different groups which
are not directly connected. To find the lowest common ancestor we need to trace back the
branches two levels upwards. Therefore, the distance between i and j, dij is equal to three.
The probability of acquaintance (i.e. the probability of a link) between two individuals

Figure 1: Partitioning of the population into groups of size g = 5

dij = 3

b = 2

g = 5

l = 4

i j

with a distance d is given by

pr2(d) = c exp(−αd), (1)

with α being an adjustable parameter and c being a constant required for normalization.
Thus, even two individuals belonging to the same group are not necessarily connected.
However, if the parameter α, determining the agent’s level of homophily, is assigned high
values, the chance of a connection between individuals in the same group becomes high.
To build up the social network an agent chooses a distance d according to the above
probability distribution (1) and then picks a friend uniformly among all individuals with
distance d.6 This procedure is repeated until an average number of peers, s, is found. The
mean network size is an exogenous parameter. The actual number of friends for an agent

6Technically this procedure is implemented in the way that the agent draws a random number in
the interval (0,1) and the random number then determines the specific value of d as determined by the
probability distribution (1).
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is log–normally distributed.

Since individuals belong to three groups (by age, education, and intended education) the
procedure described in the previous paragraph is repeated for each characteristic. Since
we postulate that the characteristics are independent people belonging to the same group
in one dimension may be far away from each other in another dimension. However, if
there is a link established in one dimension due to the random process described above,
the agent considers the chosen agent to be a part of her peer group. Whereas the social
network snw of agents in the initial population consists only of members chosen by way
of the above algorithm, the social network of agents created during the simulation also
contains their mother and siblings.

Since networks are known to be unstable over time, we assume that each adult may
exchange one or more members of her social network. Wellman (1997) found that after
ten years the median network retains only 27% of its initial members. If an agent exchanges
each member of her network with a probability pr3, the probability for an initial member
to still belong to the network after ten years is (1 − pr3)

10. Setting this expression equal
to 0.27 implies a probability for each member of the particular agent’s social network to
be exchanged of pr3 = 0.129. To implement these observed network changes we proceed
as follows. Since there are

(

si

n

)

possibilities to choose n agents out of a network of size si,
the probability to exchange exactly n network members is given as

pr4(n) =

(

si

n

)

prn
3 (1 − pr3)

si−n. (2)

After drawing a random number n for each agent according to this probability distribution
the agents removes n randomly chosen members from their network and choose n new
members in the same way as during the initialization of the network.

Social influence and parity transition

An adult agent (aged between 15 and 49) may give birth to a child. The decision to
change her parity status is influenced by her social network (see for instance Bernardi,
2003, 2007). The propensity to have a first child increases with the share of parents within
the agent’s social network. Similarly the propensity to higher order births increases with
the share of parents of higher order parity. To ensure that the social influence modeled at
the individual level is “anchored” at the social influence we observe at the macro level, we
postulate that the social influence vanishes if the parity distribution of an agent’s network
coincides with the parity distribution at the macro–level.
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Formally, the social influence si for an agent of parity p is modeled as a function of the
difference between the share of mothers at parity p̃ > p within the social network, rop,
and in the whole population, ROP . The social influence positively (or negatively) affects
the age– and parity–specific birth probabilities bpr of Austria (see section 4).

To determine the social influence si, we first define the relevant share of network members
rop(p) whose parity exceeds the agent’s parity p.

rop(p) =
#{j : pj > p AND j ∈ snw}

#{j : pj ≥ p AND j ∈ snw}
, (3)

where pj denotes the current parity of agent j who is a member of agent i’s social network
snw, and #{j : pj > p AND j ∈ snw} denotes the number of network members with
parity greater p. Note, that for higher–order births we ignore (in the numerator of equation
(3)) those agents within the peer network who are at parity p̃ < p.7 Likewise, we compute
the share of adult agents with parity greater p, ROP (p), on the aggregate level,

ROP (p) =
#{j : pj > p}

#{j : pj ≥ p}
.

The difference between ROP on the aggregate level and rop on the individual level deter-
mines the social influence on an agent’s age– and parity–specific birth probability bpr(x, p).
We model social influence as an s–shaped function with slope β,

si(p) = 0.1 ∗
exp(β ∗ (rop(p) − ROP (p)))

1 + exp(β ∗ (rop(p) − ROP (p)))
+ 0.95. (4)

The parameter β gives the intensity of the social influence when the share of network
members of a specific parity diverges from the one on the aggregate level. Choosing β = 0
results in a social influence of 1 in any case, which means that the influence of the social
network is completely ignored. Lyngstad and Prskawetz (2006) point to a weaker influence
for second births, thus we reduce the social influence for higher order births si(p > 0) by
decreasing β to a fifth of its original value.

The value si is multiplied with the empirical age– and parity–specific birth probability at
time t, bprt(x, p), to take the social influence into account. Thus, an agent i at age x gets
assigned a probability of birth,

bpri(x, p) = bprt(x, p)si(p). (5)

7Bernardi et al. 2007 found that women who already have children do not refer to childless peers
concerning former fertility decisions.
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The multiplier given in (4) ensures that the birth probability bpr(x, p) of an agent i facing
a value of rop within her social network which is equal to ROP on the aggregate level is not
being distorted. Put differently, when the social influence at the individual/micro level is
equal to the social influence at the macro level we assume that the social influence vanishes
(i.e. it is equal to one). In case that the micro level share rop(p) differs from the macro level
share ROP (p), the social influence is assigned a value in the range (0.95, 1.05) assuming
that positive and negative deviations are symmetric. To also allow for an asymmetric social
influence, but retaining the condition of si = 1 if ROP (p) = rop(p), we introduce the
asymmetry through the slope β. We postulate an asymmetry that strengthens the positive
and weakens the negative social influence. More precisely, a social influence function with
slope β = 6 and an asymmetry of +30%, as shown in Figure 2, actually leads to an
influence function with slope β = 6 − 1.8 = 4.2 for negative influence, thus for agents
with a lower rop(p) at the individual level than ROP (p) at the macro level, and a slope
β = 6+1.8 = 7.8 for positive influence. In this way we achieve that the asymmetric social
influence modelled at the individual level is again “anchored” at the social influence we
observe at the macro level.

0.95

0.975

1

1.025

1.05

-0.4 -0.2 ROP + 0.2 +0.4

asym. + 30%

asym. - 30%

Figure 2: Symmetric and asymmetric social influence function

The individual changes on the micro level result in a modified probability to give birth at
the macro level. Thus, the according probabilities at t + 1 become

bprt+1(x, p) = bprt(x, p)sit(x, p) (6)

where si(x, p) is the average of the social influence values si of all agents at age x and
parity p. These updated probabilities to give birth enter equation (5) for the next time
step.
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Transition to parenthood: After transition to parenthood an agent increases her parity by
one. Since we work with a one–sex model we refer to the Austrian sex ratio at birth srb

(see section 4) as a multiplier for the number of new agents. Hence only the female babies
are created as new agents. Then they age each simulation step until arriving at adulthood
(at age 15) when they choose their friends for the social network. During the childhood an
agent’s network only consists of the agent’s mother and siblings, to whom the new agent
is also added as a network member.

4 Data

Age Distribution: For the initial population we alternatively use the age–distribution
of Austrian females in 1981, 1991 or 2001.8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018 initial population

Austrian population
1981

Figure 3: Age distribution for the Austrian female population in 1981 and for the initial
population of one simulation starting from the same year.

Distribution by Age and Education: We assign the level of education according to
the agents’ age. Agents younger than 15 receive education 0, while all other agents
are assigned as primary/lower secondary, upper secondary, or tertiary education

8Source: Statistik Austria (2005a), Table 8.7.
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according to the age–specific educational distribution of Austrian females in 1981,
1991 or 2001.9

We distinguish (for adult agents) three stages of education, whereas the Austrian
data we use as input distinguish 6 to 8 stages. We therefore merged these groups
as follows: (i) primary/lower secondary education encompasses basic schooling (up
to 9 years) and lower secondary education (including apprenticeships and normally
between 10 and 12 years of schooling), (ii) upper secondary education encompasses
the Austrian “Gymnasium” and its equivalents, such as corresponding non–academic
vocational training at a similar level, and (iii) tertiary education (including postgrad-
uate studies, the training of primary school and gymnasium teachers, art academies,
and so on).

Distribution by Age, Education, and Parity: Based on the Austrian distribution
by age, education and parity of 1981, 1991 or 200110, we assign a corresponding
parity for the initial agents.

Parity–specific Birth Probability by Age: The birth probabilities we apply in our
simulations derive from computations by Tomas Sobotka on the basis of data pro-
vided by Statistik Austria. Unfortunately these data are only available from 1984
onwards. For simulations where we start with the 1981 initial population we need
to apply the birth probabilities of 1984. For the other experiments we use the cor-
responding data from 1991 and 2001.

Educational Transition Rate by Age: The age–specific transition rates for educa-
tional groups are based on period measures. We alternatively start from the age and
educational structure of the population in 1981, 1991, or 2001 and denote F (x, e)
the number of agents at age x and with educational level e. For each age group we
build the share of females having primary or lower secondary, upper secondary and
tertiary education:

f(x, e) =
F (x, e)

∑

e
F (x, e)

.

By working with shares instead of absolute values we control for different cohort
size. We then presume that the age and educational structure of the population

9Sources: Statistik Austria (1985), Table 13, Statistik Austria (1994), Table 14, Statistik Austria
(2004), Table 15.

10Sources: Statistik Austria (1989), Table 50, Statistik Austria (1996), Table 48, Statistik Austria
(2005c), Table 47. Analogous to the distribution by age and education, we merge the eight educational
groups into three groups.
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stays constant over time and build the age–specific transition rates as follows:

t(x, e) =
f(x + 1, e + 1) − f(x, e + 1)

f(x, e)

where t(x, e) indicates the transition rate at age x from the educational level e to
level e + 1 in the next time step.

Age at First Birth by Education: We use data on age at first birth, taking into ac-
count the mother´s level of education from the census. Since these data are only
provided for five–year age groups we interpolate the data with piecewise cubic her-
mite polynomials to obtain age at first birth by single years of age.

Sex Ratio at Birth: Since we do not include male agents in our model, we need the sex
ratio at birth to calculate the number of new agents per simulation step. We again
use Austrian data11 of the particular base year for this purpose.

5 Simulation results

In this section we discuss the results from simulations of the agent–based model introduced
in the previous sections. We set the population size equal to N = 6000 and present the
average over 200 simulation runs. Since our focus is on the transition to parenthood we
primarily present developments of the mean age at first birth and the probability of a
first birth. We also present the age–specific fertility rate for selected results.

As a benchmark, Figure 4 presents results of a simulation where we ignore social influence.
We start with an initial population distributed according to the population in 1981 and
exposed to the Austrian birth probabilities of 1984 and simulate it forward in time for 20
years.12 Obviously this benchmark model can neither replicate the increase in the mean
age at birth (of two and a half years) nor the shift in age–specific first–birth probabilities
during this time period. By neglecting the role of social influence we fail to replicate the
fertility development that occurred between 1984 and 2004.

Our experiments, that take into account social influence, indicated that most parameters
have hardly any effect on the simulation results. The most influential parameters turned
out to be the slope of the social influence function β and the parameter α which gives

11Statistik Austria (2005b), Table 2.26.
12Note that we have data on birth probabilities only from 1984 onwards. Hence, we need to combine

the 1981 census data with 1984 birth probabilities.
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Figure 4: Simulation results for simulating 20 years starting from 1984 without social
influence (β = 0).

the homogeneity within social networks. In Figure 5 we show the adjustment for these
two parameters starting again from an initial population that is distributed according
to the Austrian population of 1981 and is exposed to the birth probabilities of 1984.
Starting from β = 6 and α = 0.75 Figure 5a and Figure 5b, respectively, present the
development of first–birth probabilities between 1984 and 1994 for alternative settings of
β and α. All other parameters get assigned the following values: We set the group size of
the hierarchy equal to 5 individuals (g = 5), the branching ratio b equal to 2 (see Figure 1)
and postulate an average size of the network of 10 peers (s = 10, Fliegenschnee, personal
communication, 2006).
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Figure 5: Simulation results for simulating 10 years starting from 1984 with different
parameters β and α.

Compared to the results in Figure 4, where we ignore social influence, Figure 5 demon-
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Table 2: Default values for model parameters

Model Parameters default

Number of initial agents N 6000
Number of simulation years y 20

Mean size of social network s 10
Branching ratio b 2
Group size g 5
Homogeneity within social networks α 0.75

Slope of social influence function β 6

strates the potential role of social influence to replicate the change in first–birth prob-
abilities over time. A comparison of the simulation results with the actual first–birth
probabilities in 1994 reveals that the choice of β = 6 and α = 0.75 is appropriate.

For extreme values of β, the postponement of first births would be overestimated (β =
15) or underestimated (β = 3). The parameter α also has an interesting effect on the
results (Figure 5b). A rather small value of α (agents are relatively indifferent about the
similarity of network members, thus they interact with any other agent regardless of their
characteristics) leads to hardly any change of fertility behavior. Due to the mixture of
groups all agents have about the same social influence, and thus are not forced to change
their fertility behavior. For values of α above one half, the particular value of α no longer
has a strong influence.

Figure 6 depicts the results of a set of simulations that replicate the observed fertility
developments during the last decades. Austrian data from 1981 provide the basis for the
initial population distribution, and agents at reproductive ages are exposed to the parity–
specific birth probability of 1984. Model parameters are set according to the default values
discussed above and summarized in Table 2. We run our simulations for 20 years up to
the year 2004 and compare the results with actually observed data in Austria as provided
by Statistik Austria. A thorough sensitivity analysis indicates that we obtain the best fit
to actual data by postulating an asymmetry in the functional form of the social influence
for the 1990s. Thus we add an asymmetry of 30% (see Figure 2) during this decade and
an asymmetry of 60% from 2000 onwards. The social influence on fertility behavior is
therefore amplified if rop > ROP and dampened for rop < ROP .

A comparison between the observed and simulated time series of the mean age at first
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birth validates the promising performance of our proposed model (Figure 6a). Age–specific
probabilities of first birth in 10–year intervals are presented in Figures 6b and 6c. The
three series depict respectively the empirical birth probability of the base year, 1984 and
the year 1994 in Figure 6b and 2004 in Figure 6c together with the simulated birth
probability of the latter years. In both cases the shape of the simulated curve is nearly
identically to the empirical one. The remaining graphs, Figures 6d to 6g illustrate the evo-
lution of the age–specific fertility rates over time. The first two charts verify the temporal
progression of these rates in Austria (Figure 6d) and during the simulations (Figure 6e).
The shift, presented in four–year steps, proceeds likewise in the simulation, as it did in
reality. The similarity between simulations and empirically observed data becomes even
more obvious when we consider the last two graphs (Figures 6f and 6g) where we present
a direct comparison between the Austrian age–specific fertility and the simulated ones
after 10 years, hence in 1994 (Figure 6f) and for the year 2004 (Figure 6g). The results
of our simulations slightly underestimate the rates for 1994. This difference is caused by
a pronounced increase in probability for second births during this period. This rise is not
replicated in a similar vein by our simulations.

In a further experiment we initialize the model with Austrian data from 1991 and run our
simulation for 20 years up to 2011. We apply the same set of parameters and the same
asymmetry in the social influence function as in the previous simulations. Results for this
experiment—both historical developments (from 1991 to 2001) and some first projections
(to 2011)—are summarized in Figure 7. The mean age at first birth (Figure 7a) depicts
the same increasing trend as in Figure 6a. The empirically observed line is slightly above
the simulated one, as caused by a bend in the early nineties which is not replicated
by our model. After the first 10 years of the simulations, the probability of first birth
comes close to the empirically observed curve in 2001 (Figure 7b). Further simulations
for another 10 years yields the first–birth probabilities in 2011 (Figure 7c). Since similar
data are not available from Statistik Austria, we compare the 2011 time series of first–
birth probabilities with the corresponding (last obtainable) empirical data from 2005.
The evolution of age specific fertility rates (empirically observed and projected ones by
Statistik Austria for 2011 as well as simulated ones) from 1991 to 2011 is presented in
Figures 7d through 7g. Simulated fertility rates for 2001 (Figure 7f) overestimate the
empirically observed rates (particularly for ages between 25 to 29). This difference can be
explained by the extremely low fertility rate in Austria during 2001 as caused by a change
in family policies (introduction of new child benefits in the following year). In 2001 the
total fertility rate reached a low of 1.33 as compared to 1.36 in 2000 and 1.39 in 2002.
The latter Figures are closer to the simulated fertility rate of 1.39 for the year 2001.

So far, we have demonstrated that our model is capable of reproducing shifts in the timing
of fertility that occurred during the last decades. Note that our model is not intended to
explain the general pattern of age–specific fertility—which is given as an explicit input—
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Figure 6: Simulation results for simulating 20 years starting from 1984.
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Figure 7: Simulation results for simulating 20 years starting from 1991
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but is designed to explain how this pattern changes over time. Next we apply our model to
project future trends of fertility and compare our projections to the age–specific fertility
assumptions applied by Statistik Austria for their recent population projection (Hanika,
2006). While population forecasts are usually based on time series extrapolation of recent
fertility trends combined with some expert knowledge, our approach has a theoretical
foundation. We use a causal model to explain trends in timing of fertility rather than
continuing existing trends. Sanderson (1998) argues that combining forecasts from causal
models with standard forecasts results in more accurate predictions if the forecast errors
of the two different approaches are not highly correlated.
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Figure 8: Simulation results for simulating 20 years starting from 2001

Starting from the year 2001, we forecast fertility rates to 2021. We retain the model pa-
rameters as in previous simulations and postulate an increase in the asymmetry of the
social influence from 30% prior to 2010 to 90% from 2010 onwards. Figure 8 depicts sim-
ulated age–specific fertility rates and those assumed by Statistik Austria respectively for
2011 and 2021. The simulated rates for 2011 (Figure 8a) are considerably lower compared
to the assumptions by Statistik Austria. This underestimation of fertility rates in our
simulations is mainly caused by the exceptionally low fertility rates in Austria in 2001,
which is the base year of the current simulation. The relatively low birth probabilities of
2001, especially for the age group 25 to 29, are passed on through the whole simulation,
implying also the quite low fertility rate in 2021 (see Figure 8b).

As we consider the year 2001 not to be an appropriate base year, due to its exceptionally
low fertility rates, we project fertility rates for the years 2011 and 2021 again using 1991
instead of 2001 as the base year. The results are depicted in Figure 9. The shape of
the age–specific fertility rate as projected by our simulations for 2011 and 2021 is rather
similar to the corresponding rates postulated by Statistik Austria with one exception.
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Figure 9: Simulation results for simulating 30 years starting from 1991

Fertility rates at higher ages (above age 40) are projected to be lower in our simulations
as compared to the assumptions underlying the projections by Statitik Austria.

6 Conclusions

As recently shown by various authors (Kohler et al. 2002, Bernardi 2003), social learning
and social influence play an increasing role in demographic explanations of observed family
formation patterns in contemporary Europe. The increasing inclusion of social interaction
in the demographic theoretical framework however matches with a relatively unrealistic
model of the mechanisms that underly those social interactions.

We propose to apply the methodology of agent–based models (ABMs) to study the role
of social interaction for explaining observed demographic patterns. Such models allow
“thought experiments that explore plausible mechanisms that may underlie observed pat-
terns” (Macy and Willer, 2002, p. 147). Different from micro or macro simulations, ABMs
provide a theoretical bridge between the micro and macro level. The dynamic bottom–up
approach of ABMs—to explain global patterns by simple local interactions—is particu-
larly useful when aiming to explain trends in fertility timing and quantum over the last
decades.

In this paper we have presented an ABM on the transition to parenthood, focusing on the
role of social interaction and providing an endogenous formation of the social network.
Calibrating our model to Austrian data, we have shown that our model captures the
observed changes in the timing and quantum of fertility over the last three decades to
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a high degree. One should keep in mind that the model is not intended to explain the
pattern of age–specific fertility in general but to capture the cause and the extent to
which this pattern changes over time. We then applied our model to forecast age–specific
fertility rates for the next two decades. Our framework differs from common practice in
population forecasts that either rely on extrapolations of past trends or expert opinions.
Instead, we propose a causal model that allows us to project demographic behavior.

The next step is to apply our model to different European countries and test its validity.
Within the framework of our ABM we can experiment with alternative mechanisms that
may underly the timing and quantum of fertility in different social environments. The
exploration of plausible mechanisms that underlie observed patterns is the main challenge
confronting demographers as they propose efficient explanations of past trends and provide
reliable projections of future demographic developments. To demonstrate the feasibility
of such an approach by applying it to the topic of the transition to parenthood has been
the main aim of the current paper.
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